[1] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des., 16 no. 5 (2008) 373–410.
[2] G. Aspenson, D. Baker, B. Freyberg and C. Schwieder, Decomposing K18n and K18n+1 into connected unicyclic graphs with 9 edges, Electron. J. Graph Theory Appl. (EJGTA) 11 no. 1 (2023) 273–316.
[3] A. Blinco, Decompositions of complete graphs into theta graphs with fewer than ten edges, Util. Math. 64 (2003) 197–212.
[4] A. Bohnert, L. Branson and P. Otto, On decompositions of complete graphs into unicyclic disconnected bipartite graphs on nine edges, Electron. J. Graph Theory Appl., 11 no. 1 (2023) 329–341.
[5] R. C. Bunge, On 1-rotational decompositions of complete graphs into tripartite graphs, Opuscula Math., 39 no. 5 (2019) 623–643.
[6] R. C. Bunge, A. Chantasartrassmee, S. I. El-Zanati and C. Vanden Eynden, On cyclic decompositions of complete graphs into tripartite graphs, J. Graph Theory, 72 no. 1 (2013) 90–111.
[7] C. Colbourn, G. Ge and A. Ling, Graph designs for the eight-edge five-vertex graphs, Discrete Math., 309 (2009) 6440–6445.
[8] C. J. Colbourn, D. G. Hoffman and R. S. Rees, A new class of group divisible designs with block size three, J. Combin. Theory., A 59 (1992) 73–89.
[9] S. I. El-Zanati and C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, Math. Slovaca, 59 no. 1 (2009) 1–18.
[10] J. Fahnenstiel and D. Froncek, Decomposition of complete graphs into connected bipartite unicyclic graphs with eight edges, Electron. J. Graph Theory Appl., 7 no. 2 (2019) 235–250.
[11] A. D. Forbes, T. S. Griggs and K. A. Forbes, Completing the design spectra for graphs with six vertices and eight edges, Australas. J. Combin., 70 (2018) 386–389.
[12] B. Freyberg and D. Froncek, Decomposition of complete graphs into unicyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020) 113–132.
[13] B. Freyberg, R. Peters, Decomposition of complete graphs into forests with six edges, Discuss. Math. Graph Theory, in press, https://doi.org/10.7151/dmgt.2554.
[14] B. Freyberg, N. Tran, Decomposition of complete graphs into bipartite unicyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020) 133–142.
[15] D. Froncek and O. Kingston, Decomposition of complete graphs into connected unicyclic graphs with eight edges and pentagon, Indonesian J. Combin., 3 no. 1 (2019) 24–33.
[16] D. Froncek and M. Kubesa, Decomposition of complete graphs into connected unicyclic bipartite graphs with seven edges, Bull. Inst. Combin. Appl., 93 (2021) 52–80.
[17] D. Froncek and M. Kubesa, Decomposition of complete graphs into disconnected unicyclic bipartite graphs with
seven edges and eight vertices, Commun. Comb. Optim., in press, https://doi.org/10.22049/cco.2024.29264.1915.
[18] D. Froncek and B. Kubik, Decomposition of complete graphs into tri-cyclic graphs with eight edges, J. Combin.
Math. Combin. Comput., 114 (2020) 143–166.
[19] D. Froncek and J. Lee, Decomposition of complete graphs into bi-cyclic graphs with eight edges, Bull. Inst. Combin.Appl., 88 (2020) 30–49.
[20] G. Ge, Group Divisible Designs, In: Colbourn, J. Charles et al., The CRC handbook of combinatorial designs, Boca Raton, FL: Chapman & Hall/CRC., (2007) 255–260.
[21] Q. Kang, L. Yuan and S. Liu, Graph designs for all graphs with six vertices and eight edges, Acta Math. Appl. Sin. (Engl. Ser.), 21 no. 3 (2005) 469–484.
[22] A. Rosa, On certain valuations of the vertices of a graph, In: Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967, 349–355.
[23] Z. Tian, Y. Du, and Q. Kang, Decomposing complete graphs into graphs with six vertices and seven edges, Ars Combin. 81 (2006) 257–279.
[24] L. Zhu, Some recent developments on BIBDs and related designs, Discrete Math., 123 (1993) 189 – 214.