[1] M. O. Albertson, The irregularity of graphs, Ars Combin., 46 (1997) 219–225.
[2] A. Ali, Z. Iqbal and Z. Iqbal, Two physicochemical properties of benzenoid chains: solvent accessible molecular volume and molar refraction, Canadian Journal of Physics, 97 5 (2018) 524–528.
[3] M. Bhanumathi, K. E. J. Rani and S. Balachandran, The edge version of inverse sum indeg index of connected graph, Int. J. Math., 7 (2016) 8–12.
[4] B. Bollobas and P. Erdos, Graphs of extremal weights, Ars. Comb., 50 (1998) 225–233.
5] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math., 285 no. 1–3 (2004) 57–66.
[6] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci, 6 no. 101 (2012) 5005–5012.
[7] T. Došlić, T. Reti and D. Vukičević, On the vertex degree indices of connected graphs, Chem. Phys. Lett., 512 (2011) 283–286.
[8] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc., 9 no. 2 (1977) 203–208.
[9] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem., 53 no. 4 (2015) 1184–1190.
[10] I. Gutman, Degree–based topological indices, Croat. Chem. Acta, 86 (2013) 351–361.
[11] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535–538.
[12] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975) 3399–3405.
[13] I. Gutman, Geometric approach to degree–based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 no. 1 (2021) 11–16.
[14] N. Harish, B. Sarveshkumar and B. Chaluvaraju, The reformulated Sombor index of a graph, Trans. Combin., 13 no. 1 (2024) 1–16.
[15] B. Hollas, The covariance of topological indices thta depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem., 54 (2005) 177–187.
[16] V. R. Kulli, On k edge index and coindex of graphs, Int. J. Fazzy Math. Arch., 10 no. 2 (2016) 111–116.
[17] Z. Lin, On Aα –eigenvalues of graphs and topological indices, Contrib. Math., 5 (2022) 17–24.
[18] A. Miličević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (2004) 393–399.
[19] D. S. Mitrinović and P. M. Vasić, Analytic inequalities, Springer Verlag, Berlin–Heidelberg–New York, 1970.
[20] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113–124.
[21] K. Pattabiraman and T. Suganya, Edge version of some degree based topological descriptors of graphs, J. Math. Nanosci., 8 no. 1 (2018) 1–12.
[22] J. Radon, Über die absolut additiven Mengenfunktionen, Sitzungsber. Acad. Wissen. Wien, 122 (1913) 1295–1438.
[23] V. S. Shegehalli and R. Kanabur, Arithmetic–geometric indices of path graph, J. Comput. Math. Sci., 6 no. 1 (2015) 19–24.
[24] R. Todeschini and V. Consonni, Handbook of molecular descriptors, Wiley – VCH, Weinheim, 2000.
[25] D. Vukičević and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010) 243–260.
[26] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end vertex degree of edges, J. Math. Chem., 46 (2009) 1369–1376.
[27] D. Vukičević, Bond additive modelling 2. Mathematical properties of max–min rodeg index, Croat. Chem. Acta, 83 (2010) 261–273.
[28] D. Vukičević and J. Durdević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett., 515 (2011) 186–189.