تعداد نشریات | 43 |
تعداد شمارهها | 1,486 |
تعداد مقالات | 12,203 |
تعداد مشاهده مقاله | 23,241,208 |
تعداد دریافت فایل اصل مقاله | 10,021,590 |
On the proportion of elements of prime order in finite symmetric groups | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 19 فروردین 1402 اصل مقاله (405.29 K) | ||
نوع مقاله: 2022 CCGTA IN SOUTH FLA | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2023.135509.1810 | ||
نویسندگان | ||
Cheryl E. Praeger* 1؛ Enoch Suleiman2 | ||
1Centre for the Mathematics of Symmetry and Computation, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia | ||
2Department of Mathematics, Federal University Gashua, Yobe State, Nigeria | ||
چکیده | ||
We give a short proof for an explicit upper bound on the proportion of permutations of a given prime order $p$, acting on a set of given size $n$, which is sharp for certain $n$ and $p$. Namely, we prove that if $n\equiv k\pmod{p}$ with $0\leq k\leq p-1$, then this proportion is at most $(p\cdot k!)^{-1}$ with equality if and only if $p\leq n<2n$. | ||
کلیدواژهها | ||
Finite symmetric groups؛ element proportions؛ elements of prime order | ||
مراجع | ||
[1] J. Bamberg, S. P. Glasby, S. Harper and C. E. Praeger, Permutations with orders coprime to a given integer, | ||
آمار تعداد مشاهده مقاله: 31 تعداد دریافت فایل اصل مقاله: 17 |