تعداد نشریات | 43 |
تعداد شمارهها | 1,673 |
تعداد مقالات | 13,654 |
تعداد مشاهده مقاله | 31,569,985 |
تعداد دریافت فایل اصل مقاله | 12,472,121 |
Infinite locally finite simple groups with many complemented subgroups | ||
International Journal of Group Theory | ||
مقاله 5، دوره 11، شماره 3، آذر 2022، صفحه 191-200 اصل مقاله (475.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2021.129515.1700 | ||
نویسندگان | ||
Maria Ferrara1؛ Marco Trombetti* 2 | ||
1Dipartimento di Matematica e Fisica, Universit degli Studi della Campania “Luigi Vanvitelli”, viale Lincoln 5, Caserta, Italy | ||
2Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universit degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli, Italy | ||
چکیده | ||
We prove that the following families of (infinite) groups have complemented subgroup lattice: alternating groups, finitary symmetric groups, Suzuki groups over an infinite locally finite field of characteristic $2$, Ree groups over an infinite locally finite field of characteristic~$3$. We also show that if the Sylow primary subgroups of a locally finite simple group $G$ have complemented subgroup lattice, then this is also the case for $G$. | ||
کلیدواژهها | ||
$K$-group؛ complemented subgroup؛ locally finite simple group | ||
مراجع | ||
[1] R. C. Alperin, PSL2 (Z) = Z2 ∗ Z3 , Amer. Math. Monthly, 100 (1993) 385–386.
[2] R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich, Stud. Math., 5 (1934) 15–17. [3] R. W. Carter, Simple groups of Lie type, Wiley, New York, 1972.
[4] M. Costantini and G. Zacher, The finite simple groups have complemented subgroup lattices, Pacific J. Math., 213 (2004) 245–251. [5] M. Ferrara and M. Trombetti, A local study of group classes, Note Mat., 42 (2020) 1–20.
[6] M. Ferrara and M. Trombetti, Infinite groups with many complemented subgroups, Beitr. Alg. Geom, to appear; doi:10.1007/s13366-021-00597-w. [7] J. Hall, Infinite alternating groups as finitary linear transformation groups, J. Algebra, 119 (1988) 337–359.
[8] B. Hartley and G. Shute, Monomorphisms and direct limits of finite groups of Lie type, Quart. J. Math. Oxford (2), 35 (1984) 49–71. [9] O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups, North-Holland, London, 1973.
[10] V. M. Levchuk and Ya. N. Nuzhin, Structure of Ree groups, Algebra and Logic, 24 (1985) 16–26.
[11] A. Yu. Ol’shanskij, Geometry of defining relations in groups, Kluwer Academy Publishers, Dordrecht, 1991.
[12] E. Previato, Some families of simple groups whose lattices are complemented, Boll. U. M. I., 6 (1982) 1003–1014.
[13] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Springer, Berlin, 1972.
[14] D. J. S. Robinson, A course in the theory of groups, Springer, Berlin, 1995.
[15] R. Schmidt, Subgroup lattices of groups, De Gruyter, Berlin, 1994.
[16] M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962) 105–145.
[17] H. N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc., 121 (1966) 62–89.
[18] B. A. F. Wehrfritz, Infinite linear groups, Springer, Berlin, 1973. | ||
آمار تعداد مشاهده مقاله: 895 تعداد دریافت فایل اصل مقاله: 279 |