تعداد نشریات | 43 |
تعداد شمارهها | 1,686 |
تعداد مقالات | 13,791 |
تعداد مشاهده مقاله | 32,394,758 |
تعداد دریافت فایل اصل مقاله | 12,794,846 |
Transitive distance-regular graphs from linear groups $L(3,q)$, $q = 2,3,4,5$ | ||
Transactions on Combinatorics | ||
مقاله 24، دوره 9، شماره 1، خرداد 2020، صفحه 49-60 اصل مقاله (254.66 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2020.116255.1630 | ||
نویسنده | ||
Andrea Svob* | ||
Department of Mathematics, University of Rijeka, Croatia | ||
چکیده | ||
In this paper we classify distance-regular graphs, including strongly regular graphs, admitting a transitive action of the linear groups $L(3,2)$, $L(3,3)$, $L(3,4)$ and $L(3,5)$ for which the rank of the permutation representation is at most 15. We give details about constructed graphs. In addition, we construct self-orthogonal codes from distance-regular graphs obtained in this paper. | ||
کلیدواژهها | ||
strongly regular graph؛ distance-regular graph؛ linear group؛ self-orthogonal code | ||
مراجع | ||
[1] R. C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Assoc., 47 (1952) 151–184. [2] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994. http://magma.maths.usyd.edu.au/magma. [3] A. E. Brouwer, Strongly Regular Graphs, in: C. J. Colbourn and J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007 852–868. [4] A. E. Brouwer, Parameters of Strongly Regular Graphs, Available at http://www.win.tue.nl/$\sim$aeb/graphs/ srg/srgtab.html, Accessed on 24/04/2019. [5] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[6] P. J. Cameron, Coherent configurations, association schemes and permutation groups, Groups, combinatorics & geometry (Durham, 2001), 55–71, World Sci. Publ., River Edge, NJ, 2003. [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985. [8] P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie, 3-designs from P SL(2, q), Discrete Math., 306 (2006) 3063–3073. [9] D. Crnković and A. Švob, Transitive t-designs and strongly regular graphs constructed from linear groups L(2, q), q ≤ 23, Int. J. Group Theory, 8 (2019) 43–64. [10] D. Crnković, V. Mikulić Crnković and A. Švob, On some transitive combinatorial structures constructed from the unitary group U (3, 3), J. Statist. Plann. Inference, 144 (2014) 19–40. [11] D. Crnković, S. Rukavina and A. Švob, New strongly regular graphs from orthogonal groups O+ (6, 2) and O− (6, 2), Discrete Math., 341 (2018) 2723–2728. [12] D. Crnković, S. Rukavina and A. Švob, On some distance-regular graphs with many vertices, J. Algebraic Combin., to appear. [13] D. Crnković, S. Rukavina and A. Švob, Self-orthogonal codes from equitable partitions of association schemes, Arxiv preprint, https://arxiv.org/pdf/1903.01832.pdf. [14] E. R. van Dam, J. H. Koolen and H. Tanaka, Distance-Regular Graphs, Electron. J. Combin., (2016) DS22 156 pp.
[15] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.7; 2017. http://www.gap-system.org.
[16] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de.
[17] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
[18] D. Robinson, A Course in the Theory of groups, Springer-Verlag, New York, Berlin, Heidelberg, 1996.
[19] V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, John Willey & Sons, New York, 1988.
[20] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
[21] R. A. Wilson, The finite simple groups, Springer-Verlag, London, 2009. | ||
آمار تعداد مشاهده مقاله: 276 تعداد دریافت فایل اصل مقاله: 311 |