تعداد نشریات | 43 |
تعداد شمارهها | 1,677 |
تعداد مقالات | 13,681 |
تعداد مشاهده مقاله | 31,752,329 |
تعداد دریافت فایل اصل مقاله | 12,550,897 |
On Laplacian-energy-like invariant and incidence energy | ||
Transactions on Combinatorics | ||
مقاله 3، دوره 4، شماره 3، آذر 2015، صفحه 25-35 اصل مقاله (229.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2015.7581 | ||
نویسندگان | ||
Shariefuddin Pirzada* ؛ Hilal A. Ganie | ||
University of Kashmir | ||
چکیده | ||
For a simple connected graph $G$ with $n$-vertices having Laplacian eigenvalues $\mu_1$, $\mu_2$, $\dots$, $\mu_{n-1}$, $\mu_n=0$, and signless Laplacian eigenvalues $q_1, q_2,\dots, q_n$, the Laplacian-energy-like invariant($LEL$) and the incidence energy ($IE$) of a graph $G$ are respectively defined as $LEL(G)=\sum_{i=1}^{n-1}\sqrt{\mu_i}$ and $IE(G)=\sum_{i=1}^{n}\sqrt{q_i}$. In this paper, we obtain some sharp lower and upper bounds for the Laplacian-energy-like invariant and incidence energy of a graph. | ||
کلیدواژهها | ||
Spectra of graph؛ energy of graph؛ Laplacian energy؛ incidence energy | ||
مراجع | ||
F. Ayoobi, G. R. Omidi and B. Tayfeh-Rezaie (2011) A note on graphs whose signless Laplacian has three distinct eigenvalues Linear and Multilinear Algebra 59, 701-706
S. B. Bozkurt and I. Gutman (2013) Estimating the incidence energy MATCH Commun. Math. Comput. Chem. 70, 143-156
T. A. Chishti, Hilal A. Ganie and S. Pirzada (2014) Properties of strong double graphs J. Discrete Math. Sci. Cryptogr. 17, 311-319
D. Cvetkovic, M. Doob and H. Sachs (1980) Spectra of graphs-Theory and Application Academic Press, New York
D. Cvetkovic, P. Rowlinson and S. K. Simic (2007) Signless Laplacians of finite graphs Linear Algebra Appl. 423, 155-171
D. Cvetkovic and S. K. Simic (2009) Towards a spectral theory of graphs based on the signless Laplacian, I Publ. Inst. Math., (Beograd) (N. S.) 85, 19-33
S. S. Dragomir (2003) A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities JIPAM. J. Inequal. Pure Appl. Math. 4, 142
K. C. Das (2007) A sharp upper bound for the number of spanning trees of a graph Graphs Combin. 23, 625-632
M. Fiedler (1973) Algebraic Connectivity of Graphs Czechoslovak Math. J. 23, 298-305
R. Grone and R. Merris (1994) The Laplacian spectrum of a graph II SIAM J. Discrete Math. 7, 221-229
I. Gutman (2001) The energy of a graph: old and new results Algebraic combinatorics and applications (Gößweinstein, 1999), Springer, Berlin , 196-211
I. Gutman, D. Kiani and M. Mirzakhah (2009) On incidence energy of graphs MATCH Commun. Math. Comput. Chem. 62, 573-580
I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou (2009) On incidence energy of a graph Linear Algebra Appl. 431, 1223-1233
I. Gutman and B. Zhou (2006) Laplacian energy of a graph Linear Algebra Appl. 414, 29-37
I. Gutman, B. Zhou and B. Furtula (2010) The Laplacian-energy like invariant is an energy like invariant MATCH Commun. Math. Comput. Chem. 64, 85-96
H. A. Ganie, S. Pirzada and I. Antal (2014) Energy and Laplacian energy of double graphs Acta Univ. Sap. Informatica 6, 89-116
M. Jooyandeh, D. Kiani and M. Mirzakhah (2009) Incidence energy of a graph MATCH Commun. Math. Comput. Chem. 62, 561-572
S. J. Kirkland, J. J. Molitierno, M. Neumann and B. L. Shader (2002) On graphs with equal algebraic and vertex connectivity Linear Algebra Appl. 341, 45-56
M. Liu and B. Liu (2012) On sum of powers of the signless Laplacian eigenvalues of graphs Hacet. J. Math. Stat. 41, 527-536
J. Liu and B. Liu (2008) A Laplacian-energy-like invariant of a graph MATCH Commun. Math. Comput. Chem. 59, 355-372
M. Liu, B. Liu and X. Tan (2014) The first to ninth greatest LEL-invariants of connected graphs Util. Math. 93, 153-160
A. Mohammadian and B. Tayfeh-Rezaie (2011) Graphs with four distinct Laplacian eigenvalues J. Algebraic Combin. 34, 671-682
S. Pirzada (2012) An Introduction to Graph Theory Universities Press, Orient Blackswan
Z. Tang and Y. Hou (2011) On incidence energy of trees MATCH Commun. Math. Comput. Chem. 66, 977-984
W. Wang and Y. Luo (2012) On Laplacian-energy-like invariant of a graph Linear Algebra Appl. 437, 713-721
B. Zhou (2010) More upper bounds for the incidence energy MATCH Commun. Math.
Comput. Chem. 64, 123-128
J. Zhang and J. Li (2012) New results on the incidence energy of graphs MATCH Commun.
Math. Comput. Chem. 68, 777-803
B. Zhou and A. Ilic (2010) On the sum of powers of Laplacian eigenvalues of bipartite graphs Czechoslovak Math. J. 60, 1161-1169
B. X. Zhu (2011) The Laplacian-energy like of graphs Appl. Math. Lett. 24, 1604-1607
| ||
آمار تعداد مشاهده مقاله: 4,929 تعداد دریافت فایل اصل مقاله: 3,579 |