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Abstract. For given bipartite graphsG1, G2, . . . , Gt, the bipartite Ramsey number bR(G1, G2, . . . , Gt)

is the smallest integer n such that if the edges of the complete bipartite graph Kn,n are partitioned into

t disjoint color classes giving t graphs H1, H2, . . . , Ht, then at least one Hi has a subgraph isomorphic

to Gi. In this paper, we study the multicolor bipartite Ramsey number bR(G1, G2, . . . , Gt), in the case

that G1, G2, . . . , Gt being either stars and stripes or stars and a path.

1. Introduction

In this paper, we only concerned with undirected simple finite graphs and we follow [1] for ter-

minology and notations not defined here. For a given graph G, we denote its vertex set, edge set,

maximum degree and minimum degree by V (G), E(G), ∆(G) and δ(G), respectively, and for a vertex

v ∈ V (G), we use degG (v) (or simply deg (v)) and NG(u) to denote the degree and neighbors of v in

G, respectively. As usual, a cycle and a path on m vertices are denoted by Cm and Pm, respectively.

Also the complete bipartite graph with partite set (X,Y ) is denoted by K[X,Y ] and if |X| = m and

|Y | = n briefly we denote it by Km,n. Also by a stripe mK2 we mean a graph on 2m vertices and m

independent edges.

Recall that a proper edge coloring of a graph G = (V,E) is assigning colors to the edges so that

any two edges having end vertex in common, have different colors. The minimum number of colors

required for a proper edge coloring of G is called the chromatic index of G and denoted by χ′(G). For

a bipartite graph G, it is well known [1] that χ′(G) = ∆(G).
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Ramsey theory explores the question of how big a structure must be to contain a certain substructure

or substructures. Since the 1970’s, Ramsey theory has grown into one of the most active areas of

research within combinatorics, overlapping variously with graph theory, number theory, geometry and

logic. For given graphs G1, G2, . . . , Gt, the multicolor Ramsey number R(G1, G2, . . . , Gt), is defined to

be the smallest integer n such that if the edges of the complete graph Kn are colored in any fashion

with t colors, then for some i, 1 ≤ i ≤ t, the spanning subgraph whose edges are colored with the

i-th color, contains a copy of Gi. The existence of such a positive integer is guaranteed by Ramsey’s

classical theorem. Determining R(G1, G2, . . . , Gt) for general graphs appears to be a difficult problem

and a survey including many results on Ramsey theory can be found in [8].

Bipartite Ramsey problems deal with the same questions but the graph explored is the complete

bipartite graph instead of the complete graph. Let G1, G2, . . . , Gt be bipartite graphs. The multicolor

bipartite Ramsey number bR(G1, G2, . . . , Gt) is the smallest positive integer n such that if the edges

of the complete bipartite graph Kn,n are partitioned into t disjoint color classes giving t graphs

H1,H2, . . . ,Ht, then at least one Hi has a subgraph isomorphic to Gi. The existence of such a positive

integer is guaranteed by a result of Erdős and Rado [2]. It is easy to see that for bipartite graphs

G1, G2, . . . , Gt we have R(G1, G2, . . . , Gt) ≤ 2bR(G1, G2, . . . , Gt). The bipartite case has also been

studied extensively. For n ≥ 21, Irving [7] showed that bR(Kn,n,Kn,n) < 2n−1(n−1). In addition, the

asymptotics for bR(Kn,n,Kn,n) (see [6]) are the same as those of the classical Ramsey number: For all

sufficiently large n, bR(Kn,n,Kn,n) >
√
2
e n2n/2. An upper bound for bR(Km,m,Kn,n) is given in [6]:

bR(Kn,n,Kn,n) ≤
(
m+ n

m

)
− 1.

Exact solutions were given for simpler cases of the problem. The exact value of the bipartite Ramsey

number of paths, bR(Pn, Pm), follows from a special case of some results of Faudree and Schelp [3] and

Gyárfás and Lehel [4]. Also the bipartite Ramsey number bR(K1,n, Pm) was determined by Hatting and

Henning in [5]. In this paper, we study the multicolor bipartite Ramsey number bR(G1, G2, . . . , Gt),

in the case that G1, G2, . . . , Gt being either stars and stripes or stars and a path.

2. Main results

In this section, we establish the main results of the paper. Before that, we give some lemmas which

help to prove main results of the paper. Through the paper, for a t-edge coloring of a graph H with

colors α1, α2, . . . , αt we denote by Hi, 1 ≤ i ≤ t, the subgraph of H induced by the edges of color αi.

Also for given integers n1, n2, . . . , nt, we use Σ to denote
∑t

i=1(ni − 1).

Lemma 2.1. If G is a bipartite graph with δ(G) ≥ δ and at least 2δ vertices in each partite set, then

G contains a matching with at least 2δ edges.

Proof. Let G = (U,W ) and M be a maximum matching in G. On the contrary, let |E(M)| < 2δ.

The maximality of M implies that for any two M -unsaturated vertices u ∈ U and w ∈ W we have
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uw /∈ E(G), which means that N(u) ⊆ W ∩V (M) and N(w) ⊆ U ∩V (M). Since |U |, |W | ≥ 2δ, there

exist vertices u ∈ U and w ∈ W such that u and w are M -unsaturated. But δ(G) ≥ δ, implies that

vertices u and w have at least δ neighbors in W ∩V (M) and U ∩V (M), respectively. Therefore there

exists an edge e = xy ∈ M such that xw, yu ∈ E(G). Now, M ′ = (M \ {e}) ∪ {xw, yu} is a matching

in G with |M ′| > |M |, which contradicts the maximality of M . This observation shows that |M | ≥ 2δ

and this completes the proof □

Lemma 2.2. Let n1, n2, . . . , nt be positive integers and H be a graph with χ′(H) ≤ Σ. Then H can

be decomposed into the edge-disjoint subgraphs H1,H2, . . . , Ht such that ∆(Hi) ≤ ni − 1.

Proof. Let c be a proper edge-coloring of H with χ′(H) colors. Partition these colors into t classes

A1, A2, . . . , At of sizes at most n1 − 1, n2 − 1, . . . , nt − 1, respectively. Let Hi be the subgraph of H

induced by the edges of colors in Ai. Since each Ai, 1 ≤ i ≤ t, contains at most ni − 1 colors, each Hi

has maximum degree at most ni − 1 and so Hi’s are the desired subgraphs which decompose H. □

Now we are ready to compute bR(K1,n1 ,K1,n2 , . . . ,K1,nt ,mK2).

Theorem 2.3. If n1, n2, . . . , nt and m are positive integers, then

bR(K1,n1 ,K1,n2 , . . . ,K1,nt ,mK2) =

 m if Σ < ⌊m2 ⌋,

Σ+ ⌊m−1
2 ⌋+ 1 if Σ ≥ ⌊m2 ⌋.

Proof. Set bR = bR(K1,n1 ,K1,n2 , . . . ,K1,nt ,mK2) and let C = {α1, α2, . . . , αt+1} be a set of t + 1

colors. First let Σ < m
2 . Coloring edges of Km−1,m−1 by color αt+1 yields a coloring of Km−1,m−1 with

t + 1 colors which contains no monochromatic K1,ni in color αi, 1 ≤ i ≤ t, and no monochromatic

mK2 in color αt+1, means that bR ≥ m. Now let c be any (t + 1)-edge coloring of G = Km,m with

color set C such that for i = 1, 2, . . . , t, G contains no monochromatic K1,ni in color αi. We prove

that G must contain a monochromatic copy of mK2 in color αt+1. For each i, 1 ≤ i ≤ t + 1, let

Gi be the subgraph of G induced by the edges of color αi. Clearly for each vertex v of G we have

degGi
(v) ≤ ni − 1, 1 ≤ i ≤ t, and so degGt+1

(v) ≥ m− Σ > m
2 . By Lemma 2.1, Gt+1 contains a copy

of mK2, which shows that bR ≤ m and so bR = m.

Let Σ ≥ m
2 and n = Σ+⌊m−1

2 ⌋+1. First we prove that bR ≥ n. For this purpose, let H = Kn−1,n−1

with partite set (V1 ∪U1, V2 ∪U2), where |Ui| = Σ and |Vi| = ⌊m−1
2 ⌋, i = 1, 2. Color edges between Vi

and Uj , i ̸= j, by color αt+1 and let Ht+1 be the spanning subgraph of H induced by the edges of color

αt+1. Also let H be the spanning subgraph of H with edge set E(H) = E(H) \ E(Ht+1). Clearly, H

is a bipartite graph with χ(H) = ∆(H) = Σ and so by Lemma 2.2, H is the union of edge-disjoint

graphs H1, H2, . . . , Ht such that ∆(Hi) ≤ ni−1, 1 ≤ i ≤ t. Coloring edges of Hi, 1 ≤ i ≤ t, with color

αi, yields a (t + 1)-edge coloring of H without monochromatic copy of K1,ni in color αi, 1 ≤ i ≤ t,

and monochromatic copy of mK2 in color αt+1, which means that bR ≥ n.

Now let c be any (t + 1)-edge coloring of G = Kn,n with colors α1, α2, . . . , αt+1 such that for

i = 1, 2, . . . , t, G contains no monochromatic copy ofK1,ni in color αi. We prove thatKn,n must contain
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a monochromatic copy of mK2 in color αt+1. Clearly for each vertex v of G we have degGi
(v) ≤ ni−1,

1 ≤ i ≤ t, and so degGt+1
(v) ≥ n − Σ = ⌊m−1

2 ⌋ + 1. Using Lemma 2.1, Gt+1 contains matching M

with at least 2(⌊m−1
2 ⌋+ 1) ≥ m edges, i.e. mK2 ⊆ Gt+1 and so the proof is completed. □

Theorem 2.4. Let m1,m2, . . . ,ms and n1, n2, . . . , nt be positive integers with Λ = Σs
i=1(mi − 1) and

Σ = Σt
i=1(ni − 1). Then bR(K1,n1 ,K1,n2 , . . . ,K1,nt ,m1K2, . . . ,msK2) = n, where

n =


Λ + 1 if Σ < ⌊Λ+1

2 ⌋,

Σ+
⌊
Λ
2

⌋
+ 1 if Σ ≥ ⌊Λ+1

2 ⌋.

Proof. Consider an arbitrary edge coloring of Kn,n with colors α1, α2, . . . , αt+s and let there is no

monochromatic copy ofK1,ni in color αi, 1 ≤ i ≤ t. Using Theorem 2.3, there exists a copy of (Λ+1)K2

such that its edges are colored by αt+j , 1 ≤ j ≤ s, which implies that there is a monochromatic copy

of mjK2 for some j, 1 ≤ j ≤ s. This means that bR(K1,n1 ,K1,n2 , . . . ,K1,nt ,m1K2, . . . ,msK2) ≤ n.

To see the reverse inequality, first let Σ ≥ ⌊Λ+1
2 ⌋ and consider H = Kn−1,n−1 with partite set

(V1 ∪ U1, V2 ∪ U2) so that |Ui| = Σ and |Vi| = ⌊Λ2 ⌋, i = 1, 2. Let mi be even when 1 ≤ i ≤ l

and odd otherwise. Partition V1 (resp. V2) into sets X1, X2, . . . , Xs (resp. Y1, Y2, . . . , Ys) so that

|Xi| = ⌊mi−1
2 ⌋ + t (resp. |Yi| = ⌊mi−1

2 ⌋ + t′), where t = 1 if 1 ≤ i ≤ ⌊ l
2⌋ and t = 0 otherwise (resp.

t′ = 1 if ⌈ l
2⌉+1 ≤ i ≤ l and t′ = 0 otherwise). Color edges [Xi, U2] and [Yi, U1] by color αt+i, 1 ≤ i ≤ s,

and let H ′ be the spanning subgraph of H induced by edges [Xi, U2] ∪ [Yi, U1]. Also let H be the

spanning subgraph of H with edge set E(H) = E(H) \ E(H ′). Clearly H is a bipartite graph with

maximum degree and chromatic index Σ and so by Lemma 2.2, edges of H can be colored by colors

α1, α2, . . . , αt so that there is no monochromatic copy of K1,ni in color αi, 1 ≤ i ≤ t. This yields a

(t+ s)-edge coloring of H with no monochromatic copy of K1,ni in color αi, 1 ≤ i ≤ t, and no copy of

mjK2 in color αj , t+ 1 ≤ j ≤ s.

Now, let Σ < ⌊Λ+1
2 ⌋ and consider H = KΛ,Λ with partite set (U, V ). Partition U into sets

X1, X2, . . . , Xs where |Xi| = mi − 1, 1 ≤ i ≤ s, and color edges [Xi, V ] by color αt+i, 1 ≤ i ≤ s.

In this coloring of H three is no monochromatic copy of K1,ni in color αi, 1 ≤ i ≤ t, and no monochro-

matic copy of mjK2 in color αj , t+ 1 ≤ j ≤ s, which completes the proof. □

In the sequel, we extend the result of Hatting and Henning [5] by determining the multicolor

bipartite Ramsey number bR(K1,n1 ,K1,n2 , . . . ,K1,nt , Pm). In [5] the authors proved the following.

Theorem 2.5. For integers m,n ≥ 2,

bR(Pm,K1,n) =



m
2 + n− 1 if n ≥ m

2 + 1, m even,

2n− 1 if 1
2⌊

m
2 ⌋+ 1 ≤ n < ⌊m2 ⌋+ 1,

m−1
2 + n if n ≥ m−1

2 + 1, m odd, n− 1 ≡ 0 mod(m−1
2 ),

m−1
2 + n− 1 if n ≥ m−1

2 , m odd, n− 1 ̸≡ 0 mod(m−1
2 ),

⌊m+1
2 ⌋ if n < 1

2⌊
m
2 ⌋+ 1.
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To determine the multicolor bipartite Ramsey number of paths versus stars and a path, we need

the following lemma.

Lemma 2.6. If H is an arbitrary graph, then bR(K1,n1 ,K1,n2 , . . . ,K1,nt ,H) ≤ bR(K1,Σ+1,H).

Proof. Let n = bR(K1,Σ+1,H) and c be an arbitrary (t + 1)-edge coloring of G = Kn,n with colors

α1, α2, . . . , αt+1. Recolor edges whit colors α1, α2, . . . , αt by a new color α and retain the color of the

remaining edges. This yields a 2-edge coloring of G by colors α and αt+1. Since n = bR(K1,Σ+1,H)

so G contains a copy of K1,Σ+1 of color α or a copy of H of color αt+1. If the first case occurs, return

to c, restricted to this set of edges which clearly we have a monochromatic copy of K1,ni in color αi

for some i, 1 ≤ i ≤ t, otherwise we obtain a monochromatic copy of H in color αt+1. This observation

completes the proof. □

Theorem 2.7. Let m be a positive integer and bR = bR(K1,n1 ,K1,n2 , . . . ,K1,nt , Pm). Then bR = n,

where

n =



⌊m+1
2 ⌋ if Σ < 1

2⌊
m
2 ⌋,

2Σ + 1 if 1
2⌊

m
2 ⌋ ≤ Σ < ⌊m2 ⌋,

Σ+ m
2 if Σ ≥ m

2 , m even,

Σ+ m+1
2 if Σ ≥ m−1

2 , m odd, Σ ≡ 0 mod(m−1
2 ),

Σ+ m−1
2 if Σ ≥ m−1

2 , m odd, Σ ̸≡ 0 mod(m−1
2 ).

Proof. Using Lemma 2.6 and Theorem 2.5 we have bR ≤ n. To see bR ≥ n, we give a decomposition

of H = Kn−1,n−1 into edge-disjoint union graphs H1,H2, . . . , Ht+1 such that K1,ni ⊈ Hi, 1 ≤ i ≤ t,

and Pm ⊈ Ht+1. If Σ < 1
2⌊

m
2 ⌋, the assertion holds by assuming Hi, 1 ≤ i ≤ t, is trivial and Ht+1

∼= H.

Now, consider the following cases.

Case 1. 1
2⌊

m
2 ⌋ ≤ Σ < ⌊m2 ⌋.

Let Ht+1
∼= 2KΣ,Σ and let H be the complement of Ht+1 relative to H. Clearly, H is a bipartite

graph with χ(H) = ∆(H) = Σ and so Lemma 2.2 gives the desired decomposition of H.

Case 2. m is even and Σ ≥ m
2 .

Let Σ = p(m2 ) + r, where p ≥ 1 and 0 ≤ r < m
2 . Consider the complete bipartite graph H with

partite sets U and V such that |U | = |V | = Σ+ m
2 − 1. Partition U and V into sets U1, U2, . . . , Up+2

and V1, V2, . . . , Vp+2, respectively such that for i = 1, 2, . . . , p + 1, |Ui| = |Vi| = m
2 − 1 and |Up+2| =

|Vp+2| = p + r. Suppose that Ht+1
∼=

∪p+1
i=1 K[Ui, Vi] ∪ K[Up+2, Vp+1] ∪ K[Vp+2, Up] and H is the

complement of Ht+1 relative to H. Clearly, H is a bipartite graph with χ(H) = ∆(H) = Σ and so

by Lemma 2.2, H can be written as a union of t subgraphs H1,H2, . . . , Ht such that K1,ni ⊈ Hi, for

i = 1, 2, . . . , t. Furthermore, the longest path in Ht+1 has order 2(m2 −1)+1 = m−1, so Pm ⊈ Ht+1.

Case 3. m is odd, Σ ≥ m−1
2 and Σ ≡ 0 mod(m−1

2 ).
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Let Σ = p(m−1
2 ) where p ≥ 1 and also let Ht+1 = (p + 1)Km−1

2
,m−1

2
. Clearly each partite set has

Σ + m−1
2 vertices and the longest path in Ht+1 has 2(m−1

2 ) = m− 1 vertices. So Pm ⊈ Ht+1. Let H

be the complement of Ht+1 relative to H. Clearly χ(H) = ∆(H) ≤ Σ and by Lemma 2.2, H is the

edge-disjoint union of graphs Hi, 1 ≤ i ≤ t, so that K1,ni ⊈ Hi.

Case 4. m is odd, Σ ≥ m−1
2 and Σ ̸≡ 0 mod(m−1

2 ).

Let Σ = p(m−1
2 ) + r where p ≥ 1 and 0 < r < m−1

2 . Consider the complete bipartite graph H with

partite sets U and V such that |U | = |V | = Σ+ m−1
2 −1. Note that Σ+ m−1

2 −1 = (p+1)(m−1
2 )+r−1.

Partition U and V into sets U1, U2, . . . , Up+2 and V1, V2, . . . , Vp+2, respectively such that |Ui| = |Vi| =
m−1
2 for i = 1, 2, . . . , p − 1, |Up| = |Vp+1| = m−1

2 − 1, |Up+1| = |Vp| = m−1
2 and |Up+2| = |Vp+2| = r.

Suppose that Ht+1
∼=

∪p+1
i=1 K[Ui, Vi] ∪K[Up, Vp+2] ∪K[Up+2, Vp+1] and H is the complement of Ht+1

relative to H. Clearly ∆(H) ≤ Σ and so H can be written as an edge-disjoint union of t subgraphs

H1,H2, . . . ,Ht such that K1,ni ⊈ Hi, for i = 1, 2, . . . , t. Furthermore, the longest path in Ht+1 has

2(m−1
2 ) = m− 1 vertices and so Pm ⊈ Ht+1. □
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