تعداد نشریات | 43 |
تعداد شمارهها | 1,649 |
تعداد مقالات | 13,393 |
تعداد مشاهده مقاله | 30,186,472 |
تعداد دریافت فایل اصل مقاله | 12,069,470 |
On Wiener index of graph complements | ||
Transactions on Combinatorics | ||
مقاله 2، دوره 3، شماره 2، شهریور 2014، صفحه 11-15 اصل مقاله (291.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2014.4577 | ||
نویسندگان | ||
Jaisankar Senbagamalar1؛ Jayapal Baskar Babujee1؛ Ivan Gutman* 2 | ||
1Anna University | ||
2University of Kragujevac Kragujevac, Serbia | ||
چکیده | ||
Let $G$ be an $(n,m)$-graph. We say that $G$ has property $(\ast)$ if for every pair of its adjacent vertices $x$ and $y$, there exists a vertex $z$, such that $z$ is not adjacent to either $x$ or $y$. If the graph $G$ has property $(\ast)$, then its complement $\overline G$ is connected, has diameter 2, and its Wiener index is equal to $\binom{n}{2}+m$, i.e., the Wiener index is insensitive of any other structural details of the graph $G$. We characterize numerous classes of graphs possessing property $(\ast)$, among which are trees, regular, and unicyclic graphs. | ||
کلیدواژهها | ||
distance (in graphs)؛ Wiener index؛ complement (of graph) | ||
مراجع | ||
F. Buckley and F. Harary (1990) Distance in graphs Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA
L. Chen, X. Li and M. Liu (2014) The (revised) Szeged
index and the Wiener index of a nonbipartite graph European J. Combin. 36, 237-246
P. Dankelmann and S. Mukwembi (2012) The distance concept
and distance in graphs in: I. Gutman, B. Furtula (Eds.), Distance in molecular graphs -- theory,
Univ. Kragujevac, Kragujevac , 3-48
A. A. Dobrynin, R. Entringer and I. Gutman (2001) Wiener index of trees: theory and applications Acta Appl. Math. 66, 211-249
A. A. Dobrynin, I. Gutman, S. Klavzar and
P. Zigert (2002) Wiener index of hexagonal systems Acta Appl. Math. 72, 247-294
R. C. Entringer (1997) Distance in graphs: Trees J. Combin. Math. Combin. Comput. 24, 65-84
R. C. Entringer, D. E. Jackson and D. A. Snyder (1976) Distance in graphs Czechoslovak Math. J. 26, 283-296
I. Gutman, R. Cruz and J. Rada (2014) Wiener index of
Eulerian graphs Discrete Appl. Math. 162, 247-250
I. Gutman and L. Soltes (1991) The range of the Wiener
index and its mean isomer degeneracy Z. Naturforsch. 46a, 865-868
I. Gutman, Y. N. Yeh, S. L. Lee and Y. L. Luo (1993) Some recent results in the theory of the Wiener number Indian J. Chem. 32A, 651-661
S. Klavzar and M. J. Nadjafi--Arani (2014) Wiener
index in weighted graphs via unification of
Theta^*-classes European J. Combin. 36, 71-76
M. Knor and R. Skrekovski (2014) Wiener index of
generalized 4-stars and of their quadratic line graphs Australas. J. Comb. 58, 119-126
S. Nikolic, N. Trinajstic and Z. Mihalic (1995) The Wiener index: Development and applications Croat. Chem. Acta 68, 105-129
K. Xu, M. Liu, K. C. Das, I. Gutman and B. Furtula (2014) A survey on graphs extremal with respect to
distance--based topological indices MATCH Commun.
Math. Comput. Chem. 71, 461-508
| ||
آمار تعداد مشاهده مقاله: 4,540 تعداد دریافت فایل اصل مقاله: 4,143 |