تعداد نشریات | 43 |
تعداد شمارهها | 1,637 |
تعداد مقالات | 13,311 |
تعداد مشاهده مقاله | 29,868,684 |
تعداد دریافت فایل اصل مقاله | 11,944,089 |
Refined solvable presentations for polycyclic groups | ||
International Journal of Group Theory | ||
مقاله 1، دوره 1، شماره 2، شهریور 2012، صفحه 1-17 اصل مقاله (340.24 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2012.452 | ||
نویسندگان | ||
René Hartung؛ Gunnar Traustason* | ||
چکیده | ||
We describe a new type of presentation that, when consistent, describes a polycyclic group. This presentation is obtained by refining a series of normal subgroups with abelian sections. These presentations can be described effectively in computer-algebra-systems like $ Gap$ or $ Magma$. We study these presentations and, in particular, we obtain consistency criteria for them. The consistency implementation demonstrates that there are situations where the new method is faster than the existing methods for polycyclic groups. | ||
کلیدواژهها | ||
Polycyclic؛ presentation؛ nilpotent | ||
مراجع | ||
B. Assmann and S. Linton (2007) Using the Mal'cev correspondence for collection in polycyclic groups J. Algebra 316 (2), 828-848
G. Baumslag and D. Solitar (1962) Some two-generator one-relator non-Hopfian groups Bull. Amer. Math. Soc. 68, 199-201
L. Bartholdi (2003) Endomorphic presentations of branch groups J. Algebra 268 (2), 419-443
L. Bartholdi, B. Eick and R. Hartung (2008) A nilpotent quotient algorithm for certain infinitely presented groups and its applications Internat. J. Algebra Comput. 18 (8), 1321-1344
A. M. Brunner, S. Sidki and A. C. Vieira (1999) A just nonsolvable torsion-free group defined on the binary tree J. Algebra 211 (1), 99-114
R. I. Grigorchuk and A. Zuk (2002) On a torsion-free weakly branch group defined
by a three state automaton Internat. J. Algebra Comput. 12 (1-2), 223-246
G. Endimioni and G. Traustason (2008) Groups that are pairwise nilpotent Comm. Algebra 36 (12), 4413-4435
The GAP Group. (2008) GAP-- Groups, Algorithms, and Programming 4.4.12
V. Gebhardt (2002) Efficient collection in infinite polycyclic groups J. Symbolic Comput. 34 (3), 213-228
R. Hartung (2009) NQL- Nilpotent quotients of L-presented groups An accepted Gap 4 package,
R. Hartung (2010) Approximating the Schur multiplier of certain infinitely presented groups via nilpotent quotients LMS J. Comput. Math. 13, 260-271
C. R. Leedham-Green and L. H. Soicher (1990) Collection from the left and other strategies J. Symbolic Comput. 9 (5-6), 665-675
E. H. Lo (1997) A polycyclic quotient algorithm In Groups and computation, II (New Brunswick, NJ, 1995) volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 159--167. Amer. Math. Soc.,
Providence, RI, 1997. 28, 159-167
E. H. Lo (1998) A polycyclic quotient algorithm J. Symbolic Comput. 25 (1), 61-97
W. Nickel (1996) Computing nilpotent quotients of finitely
presented groups In Geometric and computational perspectives on
infinite groups (Minneapolis, NN and New Brunswick, NJ, 1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 175--191. Amer. Math. Soc., Providence, RI, 1996. 25, 175-191
C. C. Sims (1994) Computation with finitely presented groups Cambridge University Press, New York
M. R. Vaughan-Lee (1984) An aspect of the nilpotent quotient algorithm Computational Group Theory (Durham 1982);
Academic Press, London , 75-83
M. R. Vaughan-Lee (1990) Collection from the left J. Symbolic Comput. 9 (5-6), 725-733
| ||
آمار تعداد مشاهده مقاله: 5,998 تعداد دریافت فایل اصل مقاله: 2,995 |