
تعداد نشریات | 43 |
تعداد شمارهها | 1,744 |
تعداد مقالات | 14,252 |
تعداد مشاهده مقاله | 35,302,232 |
تعداد دریافت فایل اصل مقاله | 14,016,545 |
The Fischer-Clifford matrices of an extension group of the form 27:(27:S6) | ||
International Journal of Group Theory | ||
مقاله 3، دوره 3، شماره 2، شهریور 2014، صفحه 21-39 اصل مقاله (386.87 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2014.3659 | ||
نویسندگان | ||
Abraham Love Prins* 1؛ Richard Llewellyn Fray2 | ||
1Stellenbosch University | ||
2University of the Western Cape | ||
چکیده | ||
The split extension group $A(4)\cong 2^7{:}Sp_6(2)$ is the affine subgroup of the symplectic group $Sp_8(2)$ of index $255$. In this paper, we use the technique of the Fischer-Clifford matrices to construct the character table of the inertia group $2^7{:}(2^5{:}S_{6})$ of $A(4)$ of index $63$. | ||
کلیدواژهها | ||
Fischer-Clifford matrices؛ inertia group؛ split extension؛ character table؛ coset analysis | ||
مراجع | ||
F. Ali (2001) Fischer-Clifford theory for split and non-split group extensions PhD Thesis, University of Natal
F. Ali and J. Moori (2004) Fischer-Clifford matrices and character table of the group 2^7{:}Sp_6(2) Int.
J. Math. Game Theory Algebra 14, 101-121
W. Bosma and J. J. Canon (1994) Handbook of Magma Functions Department of Mathematics, University of Sydney
J. J. Cannon (1984) An introduction to the group theory language CAYLEY Computational
Group Theory (M. Atkinson and eds), Academic Press, London
J. H. Conway and et al (1985) Atlas of Finite Groups Oxford University Press, Oxford
B. Fischer (1991) Clifford-matrices Progr. Math. \textbf{95}, Michler G.O. and Ringel C.(eds), Birkhauser, Basel , 1-16
D. Gorenstein (1968) Finite Groups Harper and Row Publishers, New York
I. M. Isaacs (1976) Character Theory of Finite Groups Academic Press, San Diego
G. Karpilovsky (1992) Group Representations: Introduction to Group Representations and Characters North - Holland Mathematics Studies 175, Amsterdam 1 Part B
J. Moori (1981) On certain groups associated with the smallest Fischer group J. London Math. Soc. (2) 23, 61-67
J. Moori (1975) On the Groups G^+ and \overline{G} of the forms 2^{10}{:}M_{22} and 2^{10}{:}\overline{M}_{22} PhD thesis, University of Birmingham
J. Moori and Z. E. Mpono (2000) Fischer-Clifford matrices and the character table of a maximal subgroup of \overline{F}_{22} Intl. J. Maths. Game Theory and Algebra 10, 1-12
Z. Mpono (1998) Fischer-Clifford Theory and Character Tables of Group
Extensions PhD Thesis, University of Natal
A. L. Prins (2011) Fischer-Clifford Matrices and Character Tables of Inertia Groups of Maximal Subgroups of Finite Simple Groups of Extension Type PhD Thesis, University of the Western Cape
A. L. Prins and R. L. Fray (2013) The Fischer-Clifford matrices of the inertia group 2^7{:}O^{-}(6,2) of a maximal subgroup 2^7{:}SP(6,2) in Sp_8(2) Int. J. Group Theory 2 (3), 19-38
A. L. Prins and R. L. Fray On the inertia groups of the maximal subgroup 2^7{:}SP(6,2) in Aut(Fi_{22}) to appear in Quaestiones Mathematicae
The GAP Group (2013) GAP--Groups, Algorithms, and Programming Version 4.6.3; {http://www.gap-system.org}
N. S. Whitley (1994) Fischer Matrices and Character Tables of Group
Extensions MSc Thesis, University of Natal
R. A. Wilson and et al. ATLAS of Finite Group Representations http://brauer.maths.qmul.ac.uk/Atlas/v3/
K. Zimba (2005) Fischer-Clifford Matrices of the Generalized Symmetric Group
and some Associated Groups PhD Thesis, University of KwaZulu Natal
| ||
آمار تعداد مشاهده مقاله: 4,815 تعداد دریافت فایل اصل مقاله: 2,704 |