
تعداد نشریات | 43 |
تعداد شمارهها | 1,744 |
تعداد مقالات | 14,253 |
تعداد مشاهده مقاله | 35,313,509 |
تعداد دریافت فایل اصل مقاله | 14,018,615 |
On the nilpotent graph of a finite group | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 02 تیر 1404 اصل مقاله (476.92 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2025.145208.1961 | ||
نویسندگان | ||
Jaime Torres1؛ Ismael Gutierrez Garcia* 1؛ Elias Javier Garcia Claro2 | ||
1Departamento de Matemáticas y Estadı́stica, Universidad del Norte, Barranquilla, Colombia | ||
2Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México - México | ||
چکیده | ||
The nilpotent graph of a finite group $G$, denoted by $\Gamma_N(G)$, is a simple graph whose vertex set is $G - nil(G)$, where $nil(G)= \{g\in G: \langle g, h\rangle \ \text{is nilpotent for all} \ h\in G\}$, and two distinct vertices are related if they generate a nilpotent subgroup of $G$. In this work, lower bounds for the clique number and the number of connected components of $\Gamma_N(G)$ are presented in terms of the size of its Fitting subgroup and the number of its strongly self-centralizing subgroups of $G$, respectively. We prove that no finite non-nilpotent group has a self-complementary nilpotent graph. Furthermore, for the dihedral group $D_{n}$, it is determined that the number of connected components of its nilpotent graph is one more than $n$ when $n$ is odd or one more than the $2'$ part of $n$ when $n$ is even. In addition, a formula for the number of connected components of $\Gamma_N(psl(2,q))$, where $q$ is a prime power, is provided. | ||
کلیدواژهها | ||
Graphs associated with groups؛ nilpotent group؛ hypercenter of a group؛ nilpotentizer؛ strongly self-centralizing subgroups | ||
مراجع | ||
[1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 no. 2 (2006) 468–492. [4] T. C. Burness, A. Lucchini and D. Nemmi, On the soluble graph of a finite group, J. Combin. Theory Ser. A, 194 (2023). | ||
آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 31 |