
تعداد نشریات | 43 |
تعداد شمارهها | 1,737 |
تعداد مقالات | 14,198 |
تعداد مشاهده مقاله | 34,893,092 |
تعداد دریافت فایل اصل مقاله | 13,924,308 |
Ducci on $\mathbb{Z}_m^n$ and the maximum length for $n$ odd | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 30 اردیبهشت 1404 اصل مقاله (473.96 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2025.142851.1926 | ||
نویسندگان | ||
Mark L. Lewis؛ Shannon M. Tefft* | ||
Department of Mathematical Sciences, Kent State University, Kent, OH, United States | ||
چکیده | ||
Let the Ducci function, $D$, be an endomorphism on $\mathbb{Z}_m^n$ such that \[D(x_1, x_2,\ldots,x_n)=(x_1+x_2 \;\text{mod} \; m, x_2+x_3 \; \text{mod} \; m,\ldots, x_n+x_1 \; \text{mod} \; m).\] The sequence $\{D^{\alpha}(\mathbf{u})\}_{\alpha=0}^{\infty}$ is the Ducci sequence of $\mathbf{u}$ for $\mathbf{u} \in \mathbb{Z}_m^n$. Because $\mathbb{Z}_m^n$ is finite, the Ducci sequence of $\mathbf{u}$ enters a cycle for all $\mathbf{u} \in \mathbb{Z}_m^n$, which we call the Ducci cycle of $\mathbf{u}$. In this paper, our main goal is to prove that if $n$ is odd and $m=2^lm_1$ where $m_1$ is odd, then the longest it will take for a Ducci sequence in $\mathbb{Z}_m^n$ to enter its cycle is $l$ iterations of $D$. In addition to this, we will prove that the set of all tuples in $\mathbb{Z}_m^n$ in a Ducci cycle for some $\mathbf{u} \in \mathbb{Z}_m^n$ is $\{(x_1, x_2,\ldots,x_n) \in \mathbb{Z}_m^n \; \mid \; x_1+x_2+ \cdots +x_n \equiv 0 \; \text{mod} \; 2^l\}$. | ||
کلیدواژهها | ||
Ducci sequence؛ modular arithmetic؛ period؛ $n$-Number Game | ||
مراجع | ||
[1] A. T. Benjamin and J. J. Quinn, Proofs that really count. The art of combinatorial proof, The Dolciani Mathematical Expositions, 27, Mathematical Association of America, Washington, DC, 2003. | ||
آمار تعداد مشاهده مقاله: 24 تعداد دریافت فایل اصل مقاله: 27 |