تعداد نشریات | 43 |
تعداد شمارهها | 1,686 |
تعداد مقالات | 13,791 |
تعداد مشاهده مقاله | 32,392,462 |
تعداد دریافت فایل اصل مقاله | 12,793,937 |
Automorphism group of a family of distance-regular graphs which are not distance-transitive | ||
Transactions on Combinatorics | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 21 دی 1403 اصل مقاله (514.2 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2025.142386.2200 | ||
نویسندگان | ||
Seyed Morteza Mirafzal* 1؛ Angsuman Das2 | ||
1Department of Mathematics, Lorestan University, Khorramabad, Iran | ||
2Department of Mathematics, Presidency University, Kolkata, India | ||
چکیده | ||
Let $G_n=\mathbb{Z}_n\times \mathbb{Z}_n$ for $n\geq 4$ and $S=\{(i,0),(0,i),(i,i): 1\leq i \leq n-1\}\subset G_n$. Define $\Gamma(n)$ to be the Cayley graph of $G_n$ with respect to the connecting set $S$. It is known that $\Gamma(n)$ is a strongly regular graph with the parameters $(n^2, 3n-3, n, 6)$ \cite{19}. Hence $\Gamma(n)$ is a distance-regular graph. It is known that every distance-transitive graph is distance-regular, but the converse is not true. In this paper, we study some algebraic properties of the graph $\Gamma(n)$. Then by determining the automorphism group of this family of graphs, we show that the graphs under study are not distance-transitive. | ||
کلیدواژهها | ||
strongly regular graph؛ distance-transitive graph؛ graph automorphism؛ clique | ||
مراجع | ||
[1] N. L. Biggs, Algebraic graph theory, Second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. [22] W. Stein and others, Sage Mathematics Software (Version 7.3), Release 2016, http://www.sagemath.org. | ||
آمار تعداد مشاهده مقاله: 38 تعداد دریافت فایل اصل مقاله: 31 |