
تعداد نشریات | 43 |
تعداد شمارهها | 1,741 |
تعداد مقالات | 14,209 |
تعداد مشاهده مقاله | 34,921,663 |
تعداد دریافت فایل اصل مقاله | 13,929,458 |
Harada's conjecture II for the finite general linear groups and unitary groups | ||
International Journal of Group Theory | ||
دوره 14، شماره 4، اسفند 2025، صفحه 285-296 اصل مقاله (473.26 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2024.140888.1896 | ||
نویسنده | ||
Masahiro Sugimoto* | ||
Department of Mathematics, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan | ||
چکیده | ||
K. Harada conjectured for any finite group $G$, the product of sizes of all conjugacy classes is divisible by the product of degrees of all irreducible characters. We study this conjecture when $G$ is the general linear group over a finite field. We show the conjecture holds if the order of the field is sufficiently large. | ||
کلیدواژهها | ||
irreducible character؛ conjugacy classes؛ partitions | ||
مراجع | ||
[1] T. Abe and N. Chigira, Towards a solution to Harada’s conjecture II, RIMS Kokyuroku, 2189 (2021) 77–86. | ||
آمار تعداد مشاهده مقاله: 132 تعداد دریافت فایل اصل مقاله: 220 |