[1] K. Adegoke, Weighted sums of some second-order sequences, Fibonacci Quart., 56 no. 3 (2018) 252–262.
[2] K. Adegoke, A. Olatinwo and S. Ghosh, Cubic binomial Fibonacci sums, Electron. J. Math., 2 (2021) 44–51.
[3] K. Adegoke, R. Frontczak and T. Goy, Binomial Fibonacci sums from Chebyshev polynomials, J. IntegerSeq., 26 no. 9 (2023) 26 pp.
[4] K. Adegoke, R. Frontczak and T. Goy, Binomial sum relations involving Fibonacci and Lucas numbers,Applied Math. 1 (2023) 1–31.
[5] K. Adegoke, R. Frontczak and T. Goy, New binomial Fibonacci sums, Palest. J. Math., 13 no. 1 (2024)323–339.
[6] M. Bai, W. Chu and D. Guo, Reciprocal formulae among Pell and Lucas polynomials, Mathematics, 10(2022).
[7] L. Carlitz, Some classes of Fibonacci sums, Fibonacci Quart., 16 no. 5 (1978) 411–425.
[8] L. Carlitz and H. H. Ferns, Some Fibonacci and Lucas identities, Fibonacci Quart. 8 no. 1 (1970) 61–73.
[9] G. Dattoli, S. Licciardi and R. M. Pidatella, Inverse derivative operator and umbral methods for theharmonic numbers and telescopic series study, Symmetry, 13 (2021).
[10] R. Frontczak, Advanced Problem H-882, Fibonacci Quart., 59 no. 3 (2021) 281.
[11] H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial CoefficientSummations, Morgantown, USA, 1972.
[12] V. E. Hoggatt, Jr. and M. Bicknell, Some new Fibonacci identities, Fibonacci Quart., 2 no. 1 (1964)121–133.
[13] V. E. Jr. Hoggatt, J. W. Phillips and H. T. Jr. Leonard, Twenty-four master identities, Fibonacci Quart.,9 no. 1 (1971) 1–17.
[14] D. Jennings, Some polynomial identities for the Fibonacci and Lucas numbers, Fibonacci Quart., 31 no. 2(1993) 134–137.
[15] E. Kiliç and E. J. Ionascu, Certain binomial sums with recursive coefficients, Fibonacci Quart., 48 no. 2(2010) 161–167.
[16] E. Kiliç, N. Ömür and Y. T. Ulutas, Binomial sums whose coefficients are products of terms of binarysequences, Util. Math., 84 (2011) 45–52.
[17] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
[18] M. J. Kronenburg, Some weighted generalized Fibonacci number summation identities, Part 2, preprint,2021. https://arxiv.org/abs/2106.11838
[19] J. W. Layman, Certain general binomial-Fibonacci sums, Fibonacci Quart., 15 no. 4 (1977) 362–366.
[20] C. T. Long, Some binomial Fibonacci identities, Applications of Fibonacci Numbers, 3, Dordrecht: Kluwer,Editors: G. E. Bergum, A. N. Philippou, A. F. Horadam, 1990 241–254.
[21] Y. T. Ulutaş and D. Toy, Some equalities and binomial sums about the generalized Fibonacci number un,Notes Number Theory Discrete Math., 28 no. 2 (2022) 252–260.
[22] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Press,2008.
[23] A. Ventas, Solution to Advanced Problem H-882, Fibonacci Quart., 61 no. 1 (2023) 95–96.
[24] D. Zeitlin, General identities for recurrent sequences of order two, Fibonacci Quart., 9 no. 4 (1971) 357–388.
[25] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.