تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,758 |
تعداد مشاهده مقاله | 32,155,708 |
تعداد دریافت فایل اصل مقاله | 12,731,333 |
On finite arithmetic groups | ||
International Journal of Group Theory | ||
مقاله 17، دوره 2، شماره 1، خرداد 2013، صفحه 199-227 اصل مقاله (600.01 K) | ||
نوع مقاله: Ischia Group Theory 2012 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2013.2865 | ||
نویسنده | ||
Dmitry Malinin* | ||
I.H.E.S. | ||
چکیده | ||
Let $F$ be a finite extension of $\Bbb Q$, ${\Bbb Q}_p$ or a global field of positive characteristic, and let $E/F$ be a Galois extension. We study the realization fields of finite subgroups $G$ of $GL_n(E)$ stable under the natural operation of the Galois group of $E/F$. Though for sufficiently large $n$ and a fixed algebraic number field $F$ every its finite extension $E$ is realizable via adjoining to $F$ the entries of all matrices $g\in G$ for some finite Galois stable subgroup $G$ of $GL_n(\Bbb C)$, there is only a finite number of possible realization field extensions of $F$ if $G\subset GL_n(O_E)$ over the ring $O_E$ of integers of $E$. After an exposition of earlier results we give their refinements for the realization fields $E/F$. We consider some applications to quadratic lattices, arithmetic algebraic geometry and Galois cohomology of related arithmetic groups. | ||
کلیدواژهها | ||
algebraic integers؛ Galois groups؛ integral representations؛ realization fields | ||
مراجع | ||
E. Artin and J. Tate (2009) Class Field Theory Second Edition, AMS Chelsea Publishing
M. Asada (1985) On unramified Galois extensions over maximum abelian extensions of algebraic number fields Math. Ann. 270 (4), 477-487
H.-J. Bartels (1978) Zur Galois Kohomologie definiter arithmetischer Gruppen J. reine angew. Math. 298, 89-97
H.-J. Bartels and D. A. Malinin (2006) Finite Galois stable subgroups of GL_n, In: Noncommutative Algebra and
Geometry Edited by C. de Concini, F. van Oystaeyen, N. Vavilov and A. Yakovlev, Lect. Notes Pure Appl. Math. 243, 1-22
H.-J. Bartels and D. A. Malinin (2009) On Finite Galois
stable subgroups of $GL_n$ in some relative extensions of number
fields J. Algebra Appl. 8, 493-503
H.-J. Bartels and D. A. Malinin Finite Galois stable subgroups of GL_n over local fields preprint
A. Borel (1969) Introduction aux groupes arithmetiques Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, Hermann, Paris, 125 pp (1341)
B. Burgisser (1983) On the Projective Class Group of Arithmetic Groups Math. Z. 184, 339-357
G. Cardona (2006) Representations of $G_k$-groups and twists of the genus two curve y^2=x^5-x J. Algebra 303, 707-721
J. W. S. Cassels, A. Frohlich and (ed.) (1967) Algebraic Number Theory Proceedings of an Instructional Conference Organized by the London Mathematical Society (Nato Advanced Study Institute) with the support of the Inter national Mathematical Union. Edited by J. W. S. Cassels and A. Frohlich Academic Press, London
G. Cliff, J. Ritter and A. Weiss (1992) Group representations and integrality J. Reine Angew. Math. 426, 193-202
J. W. S. Cassels (1978) Rational quadratic forms London Mathematical Society Monographs, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, London--New York 13
S. D. Cohen (1979) The distribution of the Galois groups of integral polynomials Illinois J. Math. 23, 135-152
C. W. Curtis and I. Reiner (1962) Representation theory of finite groups and associative algebras Interscience, New York
P. G. Lejeune Dirichlet (1968) Vorlesungen uber Zahlentheorie (German) Herausgegeben und mit Zus\"{a}tzen versehen von R. Dedekind. Vierte, umgearbeitete und vermehrte Auflage Chelsea Publishing Co., New York
W. Feit (1997) Finite linear groups and theorems of Minkowski and Schur Proc. Amer. Math. Soc. 125, 1259-1262
J.-M. Fontaine (1985) Il n'y a pas de variete abelienne sur Bbb Z Invent. Math. 81, 515-538
P. X. Gallagher (1973) The large sieve and probabilistic Galois theory Analytic number theory (Proc. Sympos. Pure Math., St. Louis Univ., St. Louis, Mo. 1972), Amer. Math. Soc., Providence, R.I XXIV, 91-101
F. R. Gantmakher (1959) The theory of matrices Translated from the Russian by K. A. Hirsch, translation. AMS Chelsea Publishing, Providence, RI 1
G. H. Hardy and E. M. Wright (1975) An introduction to the theory of numbers The fourth edition, Oxford University Press, Oxford
W. Knapp and P. Schmidt (1997) An extension theorem for integral representations J. Austral. Math. Soc. Ser. A 63, 1-15
H. W. Knohloch (1955) Zum Hilbertschen Irreduzibilitat Abh. Math. Sem. Hamburg 19, 176-190
H. W. Knobloch (1956) Die Seltenheit der reduziblen
Polynome Jber. Deutch. Math. Verein., Abt. 1 59, 12-19
C. R. Leedham-Green and W. Plesken (1986) Some remarks
on Sylow subgroups of general linear groups Math. Z. 191, 529-535
G. Levitt and J.-L. Nicolas (1998) On the maximum order
of torsion elements in GL (n, Z) and Aut (F_n) J. Algebra 208, 630-642
D. A. Malinin (1996) Integral representations of finite groups with Galois action (Russian) Dokl. Akad. Nauk 349, 303-305
D. A. Malinin (2001) Galois stability for integral representations of finite groups (Russian) Algebra i Analiz, (2000) 106--145, translation in St. Petersburg Math. J. 12 (3), 423-449
D. A. Malinin (2002) On the existence of finite Galois
stable groups over integers in unramified extensions of number
fields Publ. Mathem. Debrecen 60 (1-2), 179-191
D. A. Malinin (2003) Galois stability, integrality and realization fields for representations of finite Abelian groups Algebr. Represent. Theory 6 (2), 215-237
D. A. Malinin (2008) Some integral representations of
finite groups and their arithmetic applications In: Algebraic Geometry and Its Applications, World Sci. Publ., Hackensack, NJ , 467-480
D. A. Malinin (2009) Finite arithmetic groups: a monograph Minsk
D. A. Malinin (1993) On integral representations of finite nilpotent groups Vestnik Beloruss. State Univ. Ser. 1, nr. 1 , 27-29
D. A. Malinin (1999) Integral representations of p-groups of a given class of nilpotency over local fields (Russian) Algebra i Analiz 10 no. 1 (1998) 58--67, translation in St. Petersburg Math. J. 10 (1), 45-52
D. A. Malinin (1990) On integral representations of finite p-groups over local fields Dokl. Akad. Nauk USSR, 309 (1989) 1060--1063, (Russian) English transl in Sov. Math. Dokl. 40, 619-622
H. Minkowski (1887) Uber den arithmetischen Begriff
der Aquivalenz und uber die endlichen Gruppen linearer
ganzzahliger Substitutionen J. reine angew. Math. 1887 (100), 449-458
H. Minkowski (1887) Zur Theorie der positiven
quadratischen Formen J. Reine Angew. Math. 1887 (101), 196-202
H. Minkowski (1910) Geometrie der Zahlen Teubner, Leipzig--Berlin
W. Narkiewicz (1990) Elementary and analytic theory of
algebraic numbers Second edition, Springer-Verlag,
Berlin, PWN -- Polish Scientific Publishers, Warsaw
J. Ritter and A. Weiss (1992) Galois action on
integral representations J. London Math. Soc. (2) 46, 411-431
J. Ritter and A. Weiss (1992) Regulators and
Galois stability Math. Nachr. 158, 27-41
P. Roquette (1958) Realisierung von Darstellungen endlicher nilpotenter Gruppen Arch. Math. (Basel) 9, 241-250
J.-P. Serre (1962) Corps locaux (French) Publications de l'Institut de Mathématique de l'Université de Nancago, VIII Actualités Sci. Indust., Hermann, Paris, 243 pp (1296)
J.-P. Serre (2007) Bounds for the orders of the finite subgroups of G(k) Group representation theory, EPFL Press, Lausanne , 405-450
C. Soule (2006) An introduction to arithmetic
groups Frontiers in number theory, physics,
and geometry. II, Springer, Berlin , 247-276
D. A. Suprunenko and R. I. Tyshkevich (1968) Commutative Matrices Academic Press, New York and London
B. L. Van der Waerden (1934) Die Seltenheit der
reduziblen Gleichungen mit Affekt Math. Ann. 109, 13-16
L. C. Washington (1997) Introduction to Cyclotomic
Fields second edition, Springer-Verlag, New York, Berlin,
Heidelberg 83
A. Weiss (1988) Rigidity of p-adic p-torsion Ann. of Math. 127, 317-322
A. E. Zalesskii (1981) Linear groups Russ. Math. Surv. 36, 63-128
A. E. Zalesskii (1983) Linear groups, Algebra. Topology. Geometry, Itogi Nauki i Tekhniki Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow 21, 135-182
P. H. Tiep and A. E. Zalesskii (2000) Some aspects of finite linear groups: A survey J. Math. Sci. 100, 1893-1914
| ||
آمار تعداد مشاهده مقاله: 3,917 تعداد دریافت فایل اصل مقاله: 2,864 |