تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,328 |
تعداد مشاهده مقاله | 29,889,356 |
تعداد دریافت فایل اصل مقاله | 11,950,715 |
On a question of Jaikin-Zapirain about the average order elements of finite groups | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 14 مرداد 1403 اصل مقاله (429.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2024.139508.1879 | ||
نویسندگان | ||
Bijan Taeri* ؛ Ziba Tooshmalani | ||
Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box 8415683111, Isfahan, Iran. | ||
چکیده | ||
For a finite group $G$, the average order $o(G)$ is defined to be the average of all order elements in $G$, that is $o( G)=\frac{1}{|G|}\sum_{x\in G}o(x)$, where $o(x)$ is the order of element $x$ in $G$. Jaikin-Zapirain in [On the number of conjugacy classes of finite nilpotent groups, Advances in Mathematics, \textbf{227} (2011) 1129-1143] asked the following question: if $G$ is a finite ($p$-) group and $N$ is a normal (abelian) subgroup of $G$, is it true that $o(N)^{\frac{1}{2}}\leq o(G) $? We say that $G$ satisfies the average condition if $o(H)\leq o(G)$, for all subgroups $H$ of $G$. In this paer we show that every finite abelian group satisfies the average condition. This result confirms and improves the question of Jaikin-Zapirain for finite abelian groups. | ||
کلیدواژهها | ||
Abelian groups؛ Group element orders؛ Sum of element orders؛ Average order | ||
مراجع | ||
[1] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra, 37 no. 9 (2009) 2978–2980. | ||
آمار تعداد مشاهده مقاله: 35 تعداد دریافت فایل اصل مقاله: 26 |