
تعداد نشریات | 43 |
تعداد شمارهها | 1,724 |
تعداد مقالات | 14,114 |
تعداد مشاهده مقاله | 34,453,704 |
تعداد دریافت فایل اصل مقاله | 13,795,555 |
On some groups whose subnormal subgroups are contranormal-free | ||
International Journal of Group Theory | ||
مقاله 6، دوره 14، شماره 2، شهریور 2025، صفحه 99-115 اصل مقاله (467.46 K) | ||
نوع مقاله: Ischia Group Theory 2022 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2024.139136.1871 | ||
نویسندگان | ||
Leonid A. Kurdachenko1؛ Patrizia Longobardi2؛ Mercede Maj* 2 | ||
1Department of Algebra and Geometry, School of Mathematics and Mechanics, National Dnipro University, Gagarin Prospect 72, Dnipro 10, 49010 Ukraine | ||
2Department of Mathematics, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy | ||
چکیده | ||
If $G$ is a group, a subgroup $H$ of $G$ is said to be contranormal in $G$ if $H^G = G$, where $H^G$ is the normal closure of $H$ in $G$. We say that a group is contranormal-free if it does not contain proper contranormal subgroups. Obviously, a nilpotent group is contranormal-free. Conversely, if $G$ is a finite contranormal-free group, then $G$ is nilpotent. We study (infinite) groups whose subnormal subgroups are contranormal-free. We prove that if $G$ is a group which contains a normal nilpotent subgroup $A$ such that $G/A$ is a periodic Baer group, and every subnormal subgroup of $G$ is contranormal-free, then $G$ is generated by subnormal nilpotent subgroups; in particular $G$ is a Baer group. Furthermore, if $G$ is a group which contains a normal nilpotent subgroup $A$ such that the $0$-rank of $A$ is finite, the set $\Pi(A)$ is finite, $G/A$ is a Baer group, and every subnormal subgroup of $G$ is contranormal-free, then $G$ is a Baer group. | ||
کلیدواژهها | ||
Contranormal subgroups؛ subnormal subgroups؛ nilpotent groups؛ hypercentral groups؛ upper central series | ||
مراجع | ||
[1] M. R. Dixon, L. A. Kurdachenko and I. Ya. Subbotin, On the structure of some contranormal-free groups, Comm. Algebra, 49 no. 11 (2021) 4940–4946. [7] L. A. Kurdachenko, J. Otal and I. Ya. Subbotin, On some criteria of nilpotency, Comm. Algebra, 30 no. 8 (2002) 3755–3776. | ||
آمار تعداد مشاهده مقاله: 178 تعداد دریافت فایل اصل مقاله: 225 |