
تعداد نشریات | 43 |
تعداد شمارهها | 1,737 |
تعداد مقالات | 14,198 |
تعداد مشاهده مقاله | 34,897,213 |
تعداد دریافت فایل اصل مقاله | 13,925,916 |
A characterization of $A_5$ by its average order | ||
International Journal of Group Theory | ||
مقاله 2، دوره 14، شماره 3، آذر 2025، صفحه 117-123 اصل مقاله (427.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2023.138637.1866 | ||
نویسنده | ||
Marius Tarnauceanu* | ||
Faculty of Mathematics, "Al.I. Cuza" University of Iasi | ||
چکیده | ||
Let $o(G)$ be the average order of a finite group $G$. M. Herzog, P. Longobardi and M. Maj [M. Herzog, P. Longobardi and M. Maj, Another criterion for solvability of finite groups, J. Algebra, 597 (2022) 1-23.] showed that if $G$ is non-solvable and $o(G)=o(A_5)$, then $G\cong A_5$. In this note, we prove that the equality $o(G)=o(A_5)$ does not hold for any finite solvable group $G$. Consequently, up to isomorphism, $A_5$ is determined by its average order. | ||
کلیدواژهها | ||
average order؛ sum of element orders؛ solvable group | ||
مراجع | ||
[1] H. Amiri and S. M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl., 10 no. 2 (2011) 187–190. [8] M. Herzog, P. Longobardi and M. Maj, On groups with average element orders equal to the average order of the | ||
آمار تعداد مشاهده مقاله: 288 تعداد دریافت فایل اصل مقاله: 482 |