[1] F. C. Auluck, D. S. Kothari, Statistical mechanics and the partitions of numbers, Proc. Camb. Phil. Soc. 42 (1946), 272–277.
[2] G. E. Andrews, The Theory of Partitions, Cambridge University Press (1998).
[3] J. C. A. Boeyens, D. C. Levendis, Number Theory and the Periodicity of Matter, Springer (2008).
[4] N. Bohr, F. Kalckar, On the transmutation of atomic nuclei by impact of material particles. I. General theoretical remarks, Kgl. Danske Vid. Selskab. Math. Phys. Medd.14.10 (1937), 1–40.
[5] J. Bond, Calculating the general solution of a linear Diophantine equation, American Math. Monthly 74.8 (1967), 955–957.
[6] R. Crocker, Application of Diophantine equations to problems in chemistry, Journal of Chem-ical Education 45.11 (1968), 731–733.
[7] L. Debnath, Srinivasa Ramanujan (1887-1920) and the theory of partitions of numbers and statistical mechanics. A centennial tribute, Internat. J. Math. and Mat. Sci. 10.4 (1987), 625–640.
[8] M. Goldberg, A class of multi-symmetric polyhedral, Tohoku Math. Journal Soc. 43 (1937), 104–108.
[9] D. Greenberger, K. Hentschel, F. Weinert, Compendium of Quantum Physics, Springer, (2009).
[10] A. Grytczuk, Ljunggren’s Diophantine problem connected with virus structure, Annales Mathematicae et Informaticae 33 (2006), 69–75.
[11] A. Grytczuk, K. Grytczuk, Application of Ljunggren’s Diophantine equation to the descrip- tion of the viruses structure, International J. of Applied Math. and Applications 2.1 (2010), 35–42.
[12] A. Grytczuk, On some connections between virology and mathematics, Vesnik VDU74.2 (2013), 14–17.
[13] A. Grytczuk, K. Grytczuk, On some application of the mathematical technics to virology, Asian Journal of Mathematics and Applications (2013), Article ID ama 0025, 8 pages.
[14] H. Gupta, A table of partitions, Proc. London Math. Soc.39 (1935), 47–53.
[15] G. H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75–115.
[16] G. H. Hardy, A Mathematician’s Apology, Cambridge University Press (1940).
[17] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, sixth edition (2008).
[18] J. Klaška, Partitions, compositions and divisibility, Ann. Univ. Mariae Curie - Sklodovska, Sect. A 49 (1995), 117–125.
[19] J. Klaška, Applications of Fibonacci numbers and the golden ratio in physics, chemistry, biology and economy, 7th Conference on Mathematics and Physics on Technical Universities, Brno (2011), 243-254.
[20] J. Klaška, Applications of sequences over finite fields, MITAV, Brno (2014), p. 26.
[21] H. P. Lawther Jr., An application of number theory to the splicing of telephone cables, Bell System Technical Journal 14.2 (1935), 273–284.
[22] W. Ljunggren, Diophantine analysis applied to virus structure, Math. Scand.34 (1974), 51–57.
[23] V. P. Maslov, Topological phase transitions in the theory of partitions of integers, Russian J. Math. Physics24.2 (2017), 249–260.
[24] Y. V. Matiyasevich, Hilbert’s 10th Problem, Cambridge, MIT Press (1993).
[25] S. Morito, H. M. Salkin, Finding the general solution of a linear Diophantine equation, The Fibonacci Quarterly17.4 (1979), 361–368.
[26] A. Rovenchak, Statistical mechanics approach in the counting of integer partitions, arXiv:1603.01049v1 (2016), 17 pages.
[27] W. Sierpinski, Elementary Theory of Numbers, Warszawa (1964).
[28] H. N. V. Temperley, Statistical mechanics and the partition of numbers. I. The transition of liquid helium, Proc. R. Soc. London, Series A199 (1949), 361–375.
[29] C. Van Lier, G. E. Uhlenbeck, On the statistical calculation of the density of the energy levels of the nuclei, Physica4 (1937), 531–542.
[30] G. Xeroudakes, A Diophantine equation in virus structure, Math. Scand.37 (1975), 102–104.