[1] W. Ding, L. Qi and Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 no. 10 (2013) 3264–3278.
[2] A. K. Bhurjee, P. Kumar, S. Panigrahi and G. Panda, Existence of the solutions of an interval linear complementarity problem and its application, AIP Conf. Proc., 2277 no. 1 (2020) 200001-200011.
[3] R. Beheshti, J. Fathi and M. Zangiabadi, Some classes of interval tensors and their properties, Wavelet and Linear Algebra, 9 no. 1 (2022) 49–65.
[4] G. Alefeld and U. Schäfer, Iterative methods for linear complementarity problems with interval data, Computing, 70 no. 3 (2003) 235–259.
[5] G. Alefeld, Z. Wang and Z. Shen, Enclosing solutions of linear complementarity problems for H-matrices, Reliab. Comput., 10 no. 6 (2004) 423–435.
[6] H. Bozorgmanesh, M. Hajarian and A. T. Chronopoulos, Interval tensors and their application in solving multi-linear systems of equations, Comput. Math. Appl., 79 no. 3. (2020) 697–715.
[7] N. Dăneţ, Interval analysis - a powerful trend in numerical analysis, International Conference “Trends and Challenges in Applied Mathematics” ICTCAM, (2007) 6 p.
[8] B. Hayes, A Lucid Interval, American Scientist, 91 no. 6 (2003) 484–488.
[9] M. Che, L. Qi and Y. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 no. 2 (2016) 475–487.
[10] R. W. Cottle, J. S. Pang and R. E. Stone, The linear complementarity problem, Computer Science and Scientific Computing. Academic Press, Inc., Boston, MA, 1992.
[11] R. W. Cottle and G. B. Dantzig, Complementary pivot theory of mathematical programming, Mathematics of the Decision Sciences, Parts 1, 2, (Seminar, Stanford, Calif., 1967), Lectures in Applied Mathematics, 11, 12, Amer. Math. Soc., Providence, RI, (1968) 115–136.
[12] B. C. Eaves, The linear complementarity problem, Management Sci., 17 (1971) 612–634.
[13] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, I & II, Springer Series in Operations Research, Springer-Verlag, New York, 2003.
[14] M. C. Ferris and J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39 no. 4 (1997) 669–713.
[15] M. S. Gowda, On Q-matrices, Math. Programming, 49 no. 1 (1990/91) 139–141.
[16] J. Y. Han, N. H. Xiu and H. D. Qi, Nonlinear complementarity theory and algorithm, Shanghai Science and Technology Press, Shanghai, 2006.
[17] S. Karamardian, The complementarity problem, Math. Programming, 2 no. 1 (1972) 107–129.
[18] Z. Luo, L. Qi and N. Xiu, The sparsest solutions to Z-tensor complementarity problems, Optim. Lett., 11 no. 3 (2017) 471–482.
[19] R. E. Moore, Interval Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966.
[20] J. S. Pang, A unification of two classes of Q-matrices, Math. Programming, 20 no. 3 (1981) 348–352.
[21] J. S. Pang, On Q-matrices, Math. Programming, 17 no. 2 (1979) 243–247.
[22] Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 no. 3 (2017) 308–323.
[23] Y. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169 no. 3 (2016) 1069–1078.