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ON THE STRUCTURE OF SOME LEFT BRACES

ADOLFO BALLESTER-BOLINCHES , RAMÓN ESTEBAN-ROMERO∗ , LEONID A. KURDACHENKO AND

VICENT PÉREZ-CALABUIG

Abstract. Given an element a of a left brace A satisfying some nilpotency conditions, we describe

the smallest subbrace of A containing a. We also present a description of the left braces satisfying the

minimal condition for subbraces.

1. Introduction

A left brace (A,+, ·) consists of a set A with two binary operations + and · such that (A,+) is

an abelian group, (A, ·) is a group, and a(b + c) = ab − a + ac for every a, b, c ∈ A. When the

operations are clear from the context, we refer to the brace (A,+, ·) simply as A. It is usual to omit

the product symbol and to evaluate first the multiplications and then the additions; −a denotes the

additive opposite of a ∈ A and a− b denotes a+ (−b) for a, b ∈ A. As both group identities coincide,

we shall denote it by 0.

This structure was introduced by Rump as a generalisation of Jacobson radical rings in [24,25] and

is useful to obtain involutive non-degenerate set-theoretic solutions of the Yang-Baxter equation. This

is a consistency equation in fundamental physics, first introduced in the field of statistical mechanics,

that was obtained by the Nobel laureate Yang [30] and Baxter [8] and that represents the fact that,
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in some scattering situations, particles may preserve their momentum while changing their quantum

internal states.

The theory of left braces and its generalisations, like the skew left braces defined by Guarnieri

and Vendramin [16], in which the commutativity of the addition is not required, have attracted the

attention of many mathematicians. However, even for some concrete types of braces, little is known

about the internal structure of left braces. Therefore, every piece of information about the structure of

concrete left braces is important. We can cite as the first results in this line the ones in the paper [26]

of Rump, where he classifies the left braces with cyclic additive group. Other papers that present the

description of concrete left braces include [1–4,6, 7, 13,14,21–23].

We review in this paper some recent results obtained by the authors about one-generated left braces

satisfying a nilpotency condition and left braces satisfying the minimal condition for subbraces.

2. Preliminary results

We recall here some basic results about left braces that can be found, for instance, in [12] or [17].

Given a left brace A and two elements a, b ∈ A, we define λa(b) = −a + ab and a ∗ b = −a + ab− b =

λa(b) − b. We see that λa : A −→ A is an automorphism of (A,+) and that if λ : (A, ·) −→ Aut(A,+)

is given by λ(a) = λa for a ∈ A, then λ is a group homomorphism, that is, λ is an action of (A, ·) on

(A,+).

A subset S of a left brace A is called a subbrace of A if S is both a subgroup of (A,+) and (A, ·),
that is, S, with the restrictions of the addition and the multiplication of A to S becomes a left brace.

A subbrace L of A is called a left ideal of A if a ∗ b ∈ L for every element a ∈ A and every element

b ∈ L. This is equivalent to saying that λa(b) ∈ L for every a ∈ A and every b ∈ L. A subbrace L of

A is said to be and ideal of A if a ∗ z ∈ L and z ∗ a ∈ L for all elements a ∈ A and z ∈ L. This is

equivalent to saying that L is a left ideal of A and that L is a normal subgroup of the multiplicative

group (A, ·). If K and L are subbraces of A, we denote by K ∗ L the subgroup of the additive group

generated by the elements x ∗ y with x ∈ K, y ∈ L. It is well known that if A is a left brace and L is

a left ideal of A, then L ∗A and A ∗ L are left ideals of A. Moreover, if L is an ideal of A, then L ∗A
is an ideal of A.

A left brace A is called trivial or abelian if a ∗ b = 0 for all a, b ∈ A. This condition is equivalent

to a ∗ b = 0 or a + b = ab for all elements a, b ∈ A.

Let A be a left brace. Let A(1) = A and define A(α+1) = A(α) ∗ A for all ordinals α, and A(α) =⋃
µ<αA

(µ) for all limit ordinals α. In a similar way, let A1 = A and define Aα+1 = A ∗ Aα for all

ordinals α and Aα =
⋃

µ<αA
µ for all limit ordinals α. We have that Aα is a left ideal for each ordinal

α and A(α) is an ideal for each ordinal α.

If A is a left brace and there exists a natural number k such that Ak = {0}, we say that A is

left nilpotent. If there exists a natural number m such that A(m) = {0}, then we say that A is right

nilpotent.
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Let A be a left brace. The socle of A is defined as

Soc(A) = {a ∈ A | ax = a + x for every x ∈ A}

= {a ∈ A | a ∗ x = 0 for every x ∈ A}.

We have that Soc(A) = Kerλ and Soc(A) is an ideal of A. Let M be a subset of A. We call

AnnA(M) = {a ∈ A | ax = x + a = xa for every x ∈ M}

= {a ∈ A | a ∗ x = x ∗ a = 0 for every x ∈ M},

the annihilator of M in A. It can be shown that AnnA(M) is a subgroup of the centraliser of M in the

multiplicative group (A, ·). In the case that M is an ideal of A, we have that AnnA(M) is a normal

subgroup of (A, ·). In particular, if M = A, we call ζ(A) = AnnA(A) = Soc(A) ∩ Z(A, ·) the centre of

A. The centre of a (skew) left brace (also known as the annihilator ideal of a (skew) left brace) was

first introduced in [11] in the context of ideal extensions of (skew) left braces and also appears in [9]

to introduce central nilpotency of (skew) left braces.

3. The subbrace generated by an element of a left brace A with A(3) = {0}: a theorem of

Rump revisited

One of the first natural problems we can consider when analysing left braces is the description of the

left braces generated by a single element (one-generator left braces). It is clear that the intersection

of a family of subbraces of a left brace A is again a subbrace of A. Given a subset M of A, we can

consider the intersection br(M) of all subbraces of A containing M , called the subbrace of A generated

by M . In the case that M = {a} is a singleton, we write br({a}) = br(a) and we call it the subbrace

of A generated by a. If A = br(a) for an element a ∈ A, we say that A is one-generated.

The general problem of describing the subbrace generated by an element a of a brace A seems

to be complicated and, as a first step, we begin by describing one-generator left braces A satisfying

the condition A(3) = {0}. Rump [27] gave a description of these braces by means of other algebraic

structures like q-braces and cycle sets. We will recover his description with a different approach based

on abelian groups that act on itself, so that they become modules for themselves, and a result of

Stefanello and Trappeniers [29, Theorem 3.13], that states that the condition A(3) = {0} is equivalent

to the fact that the map λ : (A,+) −→ Aut(A,+) is a group homomorphism and A2 is contained in

Ker(λ) by [29, Theorem 3.13].

Proposition 3.1. Let us suppose that (B,+) is an abelian group acting on itself by means of an

action λ : (B,+) −→ Aut(B,+) given by λ(x) = λx for x ∈ B. Let us suppose also that if x, y ∈ B,

then λλy(x) = λx. We can define a product · on B by means of xy = x + λx(y) for x, y ∈ B. Then

(B,+, ·) is a left brace with B(3) = {0}.
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The following construction, based on actions of an abelian group on itself, can be used to construct

a left brace A with A(3) = 0. Again, its proof is based on [29, Theorem 3.13].

Proposition 3.2. Let (A,+, ·) be a left brace with A(3) = {0}. Let a ∈ A. For i ∈ Z, we define

ai = λai(a) = −ai + ai+1. In particular, a0 = −a0 + a1 = −0 + a = a. We observe that λaj (ai) =

λaj (λai(a)) = λajai(a) = λai+j (a) = ai+j. The set

B =
{∑

i∈Z
xiai | xi ∈ Z, i ∈ Z, and {i ∈ Z | xi ̸= 0} is finite

}
.

coincides with the subbrace of A generated by a ∈ A. Furthermore, if

D =
{∑

i∈Z
xiai ∈ B |

∑
i∈Z

xi = 0
}
,

then B ∗B = D.

The construction of a free one-generated left brace in the category of all left braces A with A(3) = {0}
follows from an application of Propositions 3.1 and 3.2.

Proposition 3.3. Let C be a free abelian group with basis {ci | i ∈ Z}. Given x ∈ C, then x =∑
i∈Z xici with xi ∈ Z for all i ∈ Z and xi ̸= 0 for a finite number of i ∈ Z. We define an action

of x ∈ C on C by means of λx(y) =
∑

i∈Z yici+
∑

j∈Z xj
=

∑
i∈Z yi−

∑
j∈Z xj

ci for y =
∑

i∈Z yici. Then

(C,+, ·) with the multiplication given by xy = x + λx(y) for x, y ∈ C is a left brace generated by

a = c0 with C(3) = {0} and Cj ̸= {0} for all j ∈ N. Moreover, if A is a left brace with A(3) = {0}
and b ∈ A, then there exists a brace epimorphism α from C and the subbrace of A generated by b such

that α(c0) = b.

Variations in the construction of Proposition 3.3 also give interesting left braces.

Example 3.4. Let C =
⊕

n∈Z⟨cn⟩, with cn of order p for n ∈ Z, be an elementary abelian p-group.

Let D = Z×C. Given x ∈ D, then x = (n,
∑

i∈Z xici) with n ∈ Z, xi ∈ Fp for all i ∈ Z and xi ̸= 0 for

a finite number of i ∈ Z. We define an action of D on D by means of λx(y) =
∑

i∈Z yici+
∑

j∈Z xj
=∑

i∈Z yi−
∑

j∈Z xj
ci for y =

∑
i∈Z yici. Then (D,+, ·) with the multiplication given by xy = x + λx(y)

for x, y ∈ D is a left brace generated by a = c0 with D(3) = {0} by Proposition 3.1 and Dj ̸= {0}
for all j ∈ N. Moreover, if A is a left brace with A(3) = {0} and b ∈ A, then there exists a brace

epimorphism α from D and the subbrace of A generated by b such that α(c0) = b.

Example 3.5. Consider the infinite cyclic group Z, written aditively, and the additive group C of the

p-adic fractions. We can define on D = Z×C and addition elementwise and an action λ of (D,+) on

(D,+) by means of λ(n,u)(m, v) = (m, pnv). By Proposition 3.1, we construct a left brace (D,+, ·) with
D(3) = {0}. By cardinality considerations, it cannot be a one-generated one-brace. Since the additive

group of D is a direct product of an infinite cyclic group and the additive group of p-adic fractions, it

is minimax. The multiplicative group of D turns out to be a semidirect product of the normal subgroup

C and the infinite cyclic group ⟨(1, 0)⟩. In particular, it is metabelian, minimax, and torsion free.
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4. Smoktunowicz-nilpotent one-generated left braces

We say that a left brace is Smoktunowicz-nilpotent or nilpotent in the sense of Smoktunowicz if

there exist natural numbers m and n such that A(m) = An = {0}, that is, when A is simultaneously

left and right nilpotent. These braces have been studied for the first time by Agata Smoktunowicz

in [28]. For left braces, Smoktunowicz-nilpotency coincides with central nilpotency introduced in [9]

(see also [17] for more details).

The same techniques used in the previous section to describe the subbrace generated by an element

a of a left brace A can be used here. However, the left nilpotency of the brace imposes restrictions

in the structure of the subbrace S generated by a that are not apparent from the description in

Proposition 3.2. We present a variation of the description in Proposition 3.2 that takes into account

the left nilpotency and gives more information about the subbraces Sk for k a natural number.

Some of the results will be stated in terms of generalised binominal coefficients of the form
(
n
k

)
,

where n is an integer that can be eventually negative and k is a non-negative integer. They are defined

as (
n

0

)
= 1,

(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
if k > 0.

These generalised binomial coefficients satisfy some of the well-known properties of binomial coeffi-

cients, like the following ones:

Lemma 4.1. (1) Let n ∈ Z and k a non-negative integer. Then:(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
.

(2) (Theorem of Chu-Vandermonde) Let n and t be integer numbers and r a non-negative integer.

Then (
n + t

r

)
=

r∑
k=0

(
n

k

)(
t

r − k

)
.

We review some of the properties of the star operation. In the absence of parentheses, the star

operations will be computed before the additions.

Lemma 4.2. (see, for instance, [17, Lemma 2.1]) Let (A,+, ·) be a left brace. Then, for every a, b,

c ∈ A, we have:

(1) a ∗ (b + c) = a ∗ b + a ∗ c.
(2) (ab) ∗ c = a ∗ (b ∗ c) + b ∗ c + a ∗ c.

In the following statements, we will consider only left braces A satisfying A(3) = {0}.

Proposition 4.3. Let A be a left brace such that A(3) = {0}. Then:

(1) For every x ∈ A2, y ∈ A, we have that x ∗ y = 0, that is, xy = x + y = yx. In particular, the

multiplicative group of A2 is abelian.
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(2) For every x, y, z ∈ A, we have that (x + z) ∗ y = x ∗ (z ∗ y) + x ∗ y + z ∗ y = (xz) ∗ y.

Corollary 4.4. Let A be a left brace such that A(3) = {0}. Then, for every x, y ∈ A, b, c ∈ A2, we

have that

(x + b) ∗ (y + c) = x ∗ y + x ∗ c.

In particular, (x + b) ∗ y = x ∗ y.

Proposition 4.5. Let A be a left brace and suppose that A(3) = {0}. Let a be an element of A. Define

a1 = a, aj+1 = a ∗ aj, j ≥ 1. Then, for every positive integer n,

an =

n∑
k=1

(
n

k

)
ak =

(
n

1

)
a1 +

(
n

2

)
a2 +

(
n

3

)
a3 + · · · +

(
n

n− 1

)
an−1 +

(
n

n

)
an.

Proposition 4.6. Let A be a left brace such that A(3) = Am+1 = {0}. Define a1 = a, aj+1 = a ∗ aj
for 1 ≤ j ≤ m− 1. Let n be an integer. Then

(na) ∗ aj =

m−j∑
k=1

(
n

k

)
ak+j .

Theorem 4.7. Let A be a left brace such that A(3) = Am+1 = {0} and let a ∈ A. Define a1 = a,

aj+1 = a ∗ aj for j ≥ 1. Then the set

S =
{ m∑
k=1

tkak | tk ∈ Z, 1 ≤ k ≤ m
}

is the subbrace of A generated by a.

Moreover, for 1 ≤ i ≤ m, we have that

Si =
{ m∑

k=i

tkak | tk ∈ Z, i ≤ k ≤ m
}

and Si = 0 for i ≥ m + 1.

Our next step is the construction of a free one-generated left brace Bm with B
(3)
m = Bm+1

m = {0}
for a natural number m. We will do it by means of the construction in Proposition 3.1.

We define in Bm =

(m)︷ ︸︸ ︷
Z× · · · × Z the addition in the usual form (n1, . . . , nm) + (t1, . . . , tm) = (n1 +

t1, . . . , nm + tm). Given n = (n1, . . . , nm) ∈ Bm and t = (t1, . . . , tm) ∈ Bm, we define λn(t) =

(z1, . . . , zm) where, for 1 ≤ j ≤ m,

zi =
i−1∑
k=0

(
n1

k

)
ti−k.

Clearly, λn is a automorphism of (B,+) for all n ∈ Bm and the Chu-Vandermonde equality implies that

λ is a homomorphism from (B,+) to Aut(B,+). As a consequence of Proposition 3.1, Bm acquires a
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left brace structure with the multiplication given by nt = n+λn(t). Furthermore, B
(3)
m = Bm+1

m = {0},

where 0 = (0, . . . , 0), and for 1 ≤ i ≤ m, we have that

Bi
m = {(x1, . . . , xm) ∈ Bm | xr = 0 for 1 ≤ r < i}.

Furthermore, this left brace is generated by b = (1, 0, . . . , 0). We have that this left brace satisfies the

following universal property.

Theorem 4.8. Suppose that A is a left brace with A(3) = Am+1 = {0}. Let a ∈ A and consider the

left brace Bm. Let us call a1 = a, aj+1 = a ∗ aj for 1 ≤ j ≤ m − 1, and b = (1, 0, . . . , 0) ∈ B. The

map α : Bm −→ A defined by

α(n1, . . . , nm) =
m∑
i=1

niai, (n1, . . . , nm) ∈ Bm

is a left brace homomorphism such that α(b) = a.

5. Artinian left braces

Another interesting problem in the study of an algebraic structure is to describe when this structure

satisfies the minimal or the maximal condition for a relevant subset of the lattice of its substructures.

Let us denote by L(A) the family of all subbraces of a left brace A. Then L(A) is an ordered set with

the inclusion that becomes a lattice where the meet operation is the intersection and the join operation

between two subbraces corresponds to the subbrace generated by the union of both subbraces. Recall

that an ordered set M satisfies the minimal condition if every non-empty subset of M has a minimal

element. Moreover, an ordered set M satisfies the descending chain condition if for every chain

a1 ≥ a2 ≥ · · · ≥ aj ≥ aj+1 ≥ of elements of M there is a natural number k such that ak = ak+n for all

n ∈ N. It is well known that the minimal condition and the descending chain condition are equivalent.

By replacing ≥ by ≤ and “minimal” by “maximal” we can dually define the maximal condition and

the ascending chain condition.

In the case of a left brace A, if S is a subfamily of L(A), we say that A satisfies the minimal condition

for S-subbraces (min-S) if the family S, ordered by inclusion, satisfies the minimal condition. If

S = L(A), we obtain the braces that satisfy the minimal condition for subbraces. We will call

them Artinian left braces. We must warn the reader that the word “Artinian” has been used in a

different way in [18] to denote (skew) left braces satisfying the minimal condition for ideals, instead

of subbraces. We have considered that our use is more consistent with the use in other algebraic

structures like groups and rings. We will see in Example 5.4 below that both properties are different.

In the case of groups, the typical example of group satisfying the minimal condition for subgroups

is the Prüfer p-group for a prime p. It is generated by elements an, n ∈ N, with the relations ap1 = 1,

apn+1 = an for n ∈ N in multiplicative notation (pa1 = 0, pan+1 = an for n ∈ N in additive notation).

A group G is a Chernikov group if it has a normal subgroup D that is a direct product of finitely
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many Prüfer groups, such that G/D is finite. They are the groups satisfying the minimal conditions

on subgroups and having a normal abelian subgroup of finite index.

We call a left brace A weakly soluble (see [5]) if A has a finite series

{0} = A0 ⊆ A1 ⊆ · · · ⊆ An−1 ⊆ An = A

of subbraces such that Aj is an ideal of Aj+1 for all j and every section Aj+1/Aj is an abelian brace

for 0 ≤ j ≤ n− 1.

Theorem 5.1. Let A be a weakly soluble left brace. Then A is Artinian if, and only if, the additive

and the multiplicative groups of A are Chernikov groups. Conversely, if the additive group of A is

Chernikov, then A satisfies the minimal condition for subbraces.

Let L be an ideal of a left brace A. We say that L is A-quasifinite if every ideal K of A contained

in L and that does not coincide with L is finite. The next natural step is to describe the left braces

whose additive group is Chernikov.

Theorem 5.2. Let A be an infinite left brace whose additive group is Chernikov and let D be the

divisible part of the additive group of A. Then the following assertions hold:

(1) D is contained in the socle of A.

(2) D is an ideal of A. Moreover, D =
⊕

p∈π(D)Dp, where Dp is the Sylow p-subgroup of the

additive group of D and Dp is an ideal of A for each prime p ∈ π(D).

(3) Dp = Zp + Kp, where Zp and Kp are ideals of A such that Zp ⊆ ζ(A), A ∗Kp = Kp, and the

intersection Zp∩Kp is finite. Moreover, if p does not divide |A/AnnA(Dp)|, then Zp∩Kp = {0}.
In particular, D = Z+K, where Z and K are ideals of A such that the centre of A contains Z,

A ∗K = K, the intersection Z ∩K is finite, and the additive groups of Z and K are divisible.

(4) Dp = L1,p + · · · + Lt(p),p, where Lj,p are A-quasifinite ideals of A whose additive group is

divisible and the intersections Lj,p ∩ (L1,p + · · · + Lj−1,p + Lj+1,p + · · · + Lt(p),p) are finite for

1 ≤ j ≤ t(p). Moreover, if p does not divide |A/AnnA(Dp)|, then Dp = L1,p ⊕ · · · ⊕ Lt(p),p. In

this case, A/AnnA(Dp) can be embedded in a direct product G1 × · · · × Gt(p), where Gj is an

irreducible subgroup of GLs(j)(p), with ps(j) = |Ω1(Lj,p)|, 1 ≤ j ≤ t(p).

In the case of commutative rings, there is a strong relation between the minimal and the maximal

conditions: if a commutive ring R satisfies the minimal condition for ideals, then it satisfies the

maximal condition for ideals (see, for instance, [20, Section 4.5]). The situation in left braces is

different.

Example 5.3. Let ⟨a⟩ be a cyclic group of order 2 and let

C = C2∞ = ⟨{cn : n ∈ N | 2c1 = 0, 2cn+1 = cn, n ∈ N}⟩
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be a Prüfer 2-group, both written additively. We define and action of D = ⟨a⟩ ×C on itself by setting

λ(0,u) the identity of D for all u ∈ C, λ(a,u)(0, v) = (0,−v) for u, v ∈ C, and λ(a,u)(a, v) = (a, c1 − v)

for u, v ∈ C. Then λx : D −→ D is an automorphism of D for all x ∈ D. It is straightforward

to check that λ : (D,+) −→ Aut(D,+) is a group homomorphism. Furthermore, consider x, y ∈ D.

The automorphism λx depends only on the first component of x. Since the first component of λy(x)

coincides with the first component of x, we conclude that λx = λλy(x). By Proposition 3.1, there is a

product · in D for which (D,+, ·) becomes a left brace for which the lambda map is λ. By Theorem 5.1,

since the additive group (D,+) is Chernikov, the brace (D,+, ·) satisfies the minimal condition for

subbraces.

Recall that x ∗ y = λx(y) − y. Since

(0, u) ∗ (0, v) = (0, v) − (0, v) = (0, 0), (a, u) ∗ (0, v) = (0,−v) − (0, v) = (0,−2v)

(0, v) ∗ (a, v) = (a, v) − (a, v) = (0, 0), (a, u) ∗ (a, v) = (a, c1 − v) − (a, v) = (0, c1 − 2v),

and C is a divisible 2-group, we have that D ∗D = C ∗D = C and C is an abelian ideal of D.

If k is a natural number and 0 ≤ s ≤ 2k, then

(a, u) ∗ (0, sck) = (0,−2sck) = (0, sck) ∗ (a, u).

We conclude that Ωk(C) is an ideal of D for each natural number k. Thus we have an ascending series

Ω1(C) < Ω2(C) < Ω3(C) < · · · < Ωk(C) < Ωk+1(C) <

This series shows that the left brace D does not satisfy the maximal condition for ideals. In particular,

it does not satisfy the maximal condition for subbraces.

Finally, we show that there are left braces that satisfy the minimal condition for ideals, as in [18],

but do not satisfy the minimal condition for subbraces.

Example 5.4. Let ⟨a⟩ be a finite cyclic group of order n and C a Z⟨a⟩-module. Denote the result of

the action of g ∈ ⟨a⟩ on u ∈ C by a•u. Suppose also that CC(g) = {0} for every element g ∈ ⟨a⟩\{1}.
Choose an element c0 ∈ C \ {0}. Let D = D(a,C, c0) = ⟨a⟩×C, where the addition on D is defined

as

(ak, u) + (at, v) = (ak+t, u + v), , 0 ≤ k, t ≤ n− 1.

It is clear that (D,+) is an abelian group. We define an action of (D,+) on itself by means of

λ(ak,u)(a
t, v) = (at, t(c0 + c1 + · · · + ck−1) + ak • v),

where cj = aj • c0 for 0 ≤ j ≤ n− 1. We note that

c0 + c1 + · · · + cn−1 = c0 + a • c0 + a2 • c0 + · · · + an−1 • c0

= (1 + a + a2 + · · · + an−1) • c0
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belongs to CC(a), which implies that c0 + c1 + · · · + cn−1 = 0. With this fact, we see that λ(ak,u)

is an automorphism of (D,+), that λ : (D,+) −→ Aut(D,+) is a group homomorphism, and that

λ(ak,u) = λλ(ar,w)(a
k,u) for all 0 ≤ k, r ≤ n − 1, u, v ∈ C. We conclude by Proposition 3.1 that

D acquires a structure of left brace with the product given by (ak, u)(at, v) = (ak, u) + λ(ak,u)(a
t, v)

satisfying D(3) = {0}.
Let us particularise this construction to a simple FpG-module for G = C3∞, the Prüfer quasicyclic

3-group and p > 3 a prime. By [19, Corollary 2.4] or [15, Theorem 2.10], there exists a simple FpG-

module C. Note that the additive group of C is an infinite elementary abelian p-group. Consider a

non-zero element c01 of C. Let D1 = D(a1, C, c01) = ⟨a1⟩ × C be the left brace constructed above.

Given an element u ∈ C we construct the left brace D(a2, C, u) on the direct product ⟨a2⟩×C. Now we

choose an element u in the following way. Consider J = Fp⟨a2⟩. Since ⟨a2⟩ is a finite cyclic subgroup,

the J-submodule of C generated by c01 is finite. Then it contains a simple J-module W . We have

that C =
⊕

x∈S Wx for some subset S of G (see, for example, [19, Lemma 5.4]). Since G is abelian,

AnnJ(Wx) = AnnJ(W ) for every x ∈ S. Then the J-submodule of C generated by c01 is isomorphic to

W as a J-module by [10, Lemma 4]. In particular, we obtain that the J-submodule of C generated by

c01 is simple, in other words, it coincides with W . We have that W is J-isomorphic to J/AnnJ(c01),

where AnnJ(c01) = Jf(x) for a polynomial f irreducible over Fp. There is a polynomial h such that

(x2 + x + 1)h(x) ∈ 1 + J . Set u = (1/3)h(a2)c01 = c02. We have that (a2, 0) ∗ (a2, 0) = (1, c02). We

can check that (a1, 0) ∗ (a1, 0) = (1, c01). We conclude that the left brace D(a1, C, c01) is a subbrace of

D(a2, C, c02).

With similar arguments, we can construct an ascending chain of left braces

D(a1, C, c01) ⊆ D(a2, C, c02) ⊆ · · · ⊆ D(an, C, a0n) ⊆ D(an+1, C, c0,n+1) ⊆

Let D be the union of all these left braces. We have that C ∗D = {0}, D(3) = {0}, D(2) ⊆ C ⊆ Soc(D).

We note that every FpG-submodule of C is an ideal of D. Since C is a simple Fp(G)-module, D(2) = C

is a minimal ideal of D. The additive group of D/C is a quasicyclic 3-group, in particular, it satisfies

the minimal condition for subbraces. Hence D satisfies the minimal condition on ideals. However, the

condition D(3) = {0} implies that D(2) is an abelian ideal of D, in particular, every subgroup of D(2)

is a subbrace. Since D(2) is an infinite elementary abelian p-group, it does not satisfy the minimal

condition for subbraces.
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[23] D. Puljić, A. Smoktunowicz and K. N. Zenouz, Some braces of cardinality p4 and related Hopf-Galois

extensions, New York J. Math., 28 (2022) 494–522.

[24] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation,

Adv. Math., 193 no. 1 (2005) 40–55.

[25] , Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307 no. 1 (2007) 153–

170.

[26] , Classification of cyclic braces, J. Pure Appl. Algebra, 209 no. 3 (2007) 671–685.

[27] ,One-generator braces and indecomposable set-theoretic solutions to the Yang-Baxter equation,

Proc. Edinb. Math. Soc. (2), 63 no. 3 (2020) 676–696.

[28] A. Smoktunowicz, On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation, Trans.

Amer. Math. Soc., 370 (2018) no. 9 6535–6564. MR 3814340

[29] L. Stefanello and S. Trappeniers, On bi-skew braces and brace blocks, J. Pure Appl. Algebra, 227 no.5

(2023) 22 pp.

[30] C. N. Yang, Some exact results for many-body problem in one dimension with repulsive delta-function

interaction, Phys. Rev. Lett, 19 (1967) 1312–1315.

Adolfo Ballester-Bolinches
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Email: Vicent.Perez-Calabuig@uv.es

http://dx.doi.org/10.22108/ijgt.2023.139145.1872

http://dx.doi.org/10.22108/ijgt.2023.139145.1872

	1. Introduction
	2. Preliminary results
	3. The subbrace generated by an element of a left brace A with A(3)={0}: a theorem of Rump revisited
	4. Smoktunowicz-nilpotent one-generated left braces
	5. Artinian left braces
	References

