تعداد نشریات | 43 |
تعداد شمارهها | 1,647 |
تعداد مقالات | 13,387 |
تعداد مشاهده مقاله | 30,128,656 |
تعداد دریافت فایل اصل مقاله | 12,065,907 |
Methods for counting the intersections of slopes in the flat torus | ||
Transactions on Combinatorics | ||
دوره 13، شماره 4، اسفند 2024، صفحه 305-317 اصل مقاله (1.52 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.135546.2023 | ||
نویسندگان | ||
John Burke* ؛ Maitland Burke؛ Leonardo Pinheiro؛ Cameron Richer | ||
Department of Mathematical Sciences, Rhode Island College, 600 Mt. Pleasant Ave. Providence, RI 02908 | ||
چکیده | ||
We define slopes in the flat torus as the set of equivalence classes of the solutions of linear equations in $\mathbb{R}^2$. The definition is equivalent to that of closed geodesics in the flat torus passing through the equivalence class of the point $(0,0)$. In this paper we derive formulas for counting the number of points in the intersection of multiple slopes in the flat torus. | ||
کلیدواژهها | ||
torus؛ intersection of curves؛ counting methods | ||
مراجع | ||
[1] M. Chas,The Goldman bracket and the intersection of curves on surfaces, Geometry, groups and dynamics, Contemp. Math., 639 (2015) 73–83. | ||
آمار تعداد مشاهده مقاله: 347 تعداد دریافت فایل اصل مقاله: 650 |