تعداد نشریات | 42 |
تعداد شمارهها | 1,510 |
تعداد مقالات | 12,450 |
تعداد مشاهده مقاله | 24,648,220 |
تعداد دریافت فایل اصل مقاله | 10,412,893 |
Methods for counting the intersections of slopes in the flat torus | ||
Transactions on Combinatorics | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 07 شهریور 1402 اصل مقاله (1.52 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.135546.2023 | ||
نویسندگان | ||
John Burke* ؛ Maitland Burke؛ Leonardo Pinheiro؛ Cameron Richer | ||
Department of Mathematical Sciences, Rhode Island College, 600 Mt. Pleasant Ave. Providence, RI 02908 | ||
چکیده | ||
We define slopes in the flat torus as the set of equivalence classes of the solutions of linear equations in $\mathbb{R}^2$. The definition is equivalent to that of closed geodesics in the flat torus passing through the equivalence class of the point $(0,0)$. In this paper we derive formulas for counting the number of points in the intersection of multiple slopes in the flat torus. | ||
کلیدواژهها | ||
torus؛ intersection of curves؛ counting methods | ||
مراجع | ||
[1] M. Chas,The Goldman bracket and the intersection of curves on surfaces, Geometry, groups and dynamics, Contemp. Math., 639 (2015) 73–83. | ||
آمار تعداد مشاهده مقاله: 38 تعداد دریافت فایل اصل مقاله: 17 |