تعداد نشریات | 43 |
تعداد شمارهها | 1,647 |
تعداد مقالات | 13,387 |
تعداد مشاهده مقاله | 30,129,118 |
تعداد دریافت فایل اصل مقاله | 12,066,027 |
A closed formula for the number of inequivalent ordered integer quadrilaterals with fixed perimeter | ||
Transactions on Combinatorics | ||
دوره 13، شماره 4، اسفند 2024، صفحه 327-334 اصل مقاله (427.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.136913.2045 | ||
نویسنده | ||
Bouroubi Sadek* | ||
Faculty of Mathematics, University of Sciences and Technology Houari Boumediene, P.B. 32 El-Alia, 16111, Bab Ezzouar Algiers, Algeria | ||
چکیده | ||
Given an integer $n\geq4$, how many inequivalent quadrilaterals with ordered integer sides and perimeter $n$ are there? Denoting such number by $Q(n)$, the answer is given by the following closed formula: \[ Q(n)=\left\{ \dfrac{1}{576}n\left( n+3\right) \left( 2n+3\right) -\dfrac{\left( -1\right) ^{n}}{192}n\left( n-5\right) \right\} \cdot \] | ||
کلیدواژهها | ||
Integer quadrilaterals؛ Ordered quadrilaterals؛ Integer partitions؛ Generating function | ||
مراجع | ||
[1] G. E. Andrews, A note on partitions and triangles with integer sides, Amer. Math. Monthly, 86 (1979) 477–478. [2] G. E. Andrews and K. Eriksson, Integer partitions, Cambridge University Press, Cambridge, 2004 | ||
آمار تعداد مشاهده مقاله: 193 تعداد دریافت فایل اصل مقاله: 499 |