تعداد نشریات | 43 |
تعداد شمارهها | 1,637 |
تعداد مقالات | 13,313 |
تعداد مشاهده مقاله | 29,870,089 |
تعداد دریافت فایل اصل مقاله | 11,944,663 |
Bijections for classes of labelled trees | ||
Transactions on Combinatorics | ||
دوره 13، شماره 3، آذر 2024، صفحه 197-211 اصل مقاله (520.77 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.132794.1965 | ||
نویسندگان | ||
Albert P. Oloo Nyariaro؛ Isaac Owino Okoth* | ||
Department of Pure and Applied Mathematics, Maseno University, Maseno, Kenya | ||
چکیده | ||
Trees are acyclic connected graphs. Plane trees, $d$-ary trees, binary trees, noncrossing trees and their generalizations, which are families of trees, have been enumerated by many authors using various statistics. These trees are known to be enumerated by Catalan or Catalan-like formulas (Fuss-Catalan numbers). One of the most common approaches to the enumeration of these trees is by means of generating functions. Another method that can be used to enumerate them is by constructing bijections between sets of the same cardinality. The bijective method is preferred to other methods by many combinatorialists. So, in this paper, we construct bijections relating $k$-plane trees, $k$-noncrossing increasing trees, $k$-noncrossing trees, $k$-binary trees and weakly labelled $k$-trees. | ||
کلیدواژهها | ||
$k$-plane tree؛ $k$-noncrossing tree؛ $k$-binary tree؛ weakly labelled $k$-tree | ||
مراجع | ||
[1] A. Asinowski and T. Mansour, Dyck paths with coloured ascents, European J. Combin, 29 no. 5 [9] N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of plane trees, European J. Combin., 31 no. 3 (2010) 720–732.
| ||
آمار تعداد مشاهده مقاله: 110 تعداد دریافت فایل اصل مقاله: 185 |