تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,775 |
تعداد مشاهده مقاله | 32,268,810 |
تعداد دریافت فایل اصل مقاله | 12,764,710 |
The generous Roman domination number | ||
Transactions on Combinatorics | ||
مقاله 8، دوره 13، شماره 2، شهریور 2024، صفحه 179-196 اصل مقاله (562.33 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.131167.1928 | ||
نویسندگان | ||
Benatallah Mohammed* 1؛ Mostafa Blidia2؛ Lyes Ouldrabah3 | ||
1RECITS Laboratory, Faculty of Sciences UZA, Djelfa, Algeria | ||
2Department of Mathematics, University of Blida, Blida, Algeria | ||
3Department of Mathematics, University of M´ed´ea, M´ed´ea, Algeria | ||
چکیده | ||
Let $G=(V,E)$\ be a simple graph and $f:V\rightarrow\{0,1,2,3\}$ be a function. A vertex $u$ with $f\left( u\right) =0$ is called an undefended vertex with respect to $f$ if it is not adjacent to a vertex $v$ with $f(v)\geq2.$ We call the function $f$ a generous Roman dominating function (GRDF) if for every vertex with $f\left( u\right) =0$ there exists at least a vertex $v$ with $f(v)\geq2$ adjacent to $u$ such that the function $f^{\prime}:V\rightarrow \{0,1,2,3\}$, defined by $f^{\prime}(u)=\alpha$, $f^{\prime}(v)=f(v)-\alpha$ where $\alpha=1$ or $2$, and $f^{\prime}(w)=f(w)$ if $w\in V-\{u,v\}$ has no undefended vertex. The weight of a generous Roman dominating function $f$ is the value $f(V)=\sum_{u\in V}f(u)$. The minimum weight of a generous Roman dominating function on a graph $G$\ is called the generous Roman domination number of $G$, denoted by $\gamma_{gR}\left( G\right) $. In this paper, we initiate the study of generous Roman domination and show its relationships. Also, we give the exact values for paths and cycles. Moreover, we present an upper bound on the generous Roman domination number, and we characterize cubic graphs $G$ of order $n$ with $\gamma_{gR}\left( G\right) =n-1$, and a Nordhaus-Gaddum type inequality for the parameter is also given. Finally, we study the complexity of this parameter. | ||
کلیدواژهها | ||
Roman domination؛ Weak Roman domination؛ Double Roman domination | ||
مراجع | ||
[1] H. Abdollahzadeh Ahangar, T. W. Haynes and J. C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc., 40 (2017) 1443–1454. [3] H. Abdollahzadeh Ahangar, M. Chellali and S. M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math., 232 (2017) 1–7. | ||
آمار تعداد مشاهده مقاله: 325 تعداد دریافت فایل اصل مقاله: 304 |