تعداد نشریات | 43 |
تعداد شمارهها | 1,640 |
تعداد مقالات | 13,343 |
تعداد مشاهده مقاله | 29,957,879 |
تعداد دریافت فایل اصل مقاله | 11,988,067 |
Comparing upper broadcast domination and boundary independence broadcast numbers of graphs | ||
Transactions on Combinatorics | ||
دوره 13، شماره 1، خرداد 2024، صفحه 105-126 اصل مقاله (630.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2023.127904.1836 | ||
نویسندگان | ||
Kieka Mynhardt* 1؛ Linda Neilson2 | ||
1Department of Mathematics and Statistics, University of Victoria, P. O.Box 3800, Victoria, Canada | ||
2Department of Adult Basic Education, Vancouver Island University Nanaimo,Canada | ||
چکیده | ||
A broadcast on a nontrivial connected graph $G=(V,E)$ is a function $f:V\rightarrow\{0, 1,\dots,d\}$, where $d=\operatorname{diam}(G)$, such that $f(v)\leq e(v)$ (the eccentricity of $v$) for all $v\in V$. The weight of $f$ is $\sigma(f)={\textstyle\sum_{v\in V}} f(v)$. A vertex $u$ hears $f$ from $v$ if $f(v)>0$ and $d(u,v)\leq f(v)$. A broadcast $f$ is dominating if every vertex of $G$ hears $f$. The upper broadcast domination number of $G$ is $\Gamma_{b}(G)=\max\left\{ \sigma(f):f\text{ is a minimal dominating broadcast of }G\right\}.$ A broadcast $f$ is boundary independent if, for any vertex $w$ that hears $f$ from vertices $v_{1},\ldots,v_{k},\ k\geq2$, the distance $d(w,v_{i})=f(v_{i})$ for each $i$. The maximum weight of a boundary independent broadcast is the boundary independence broadcast number $\alpha_{\operatorname{bn}}(G)$. We compare $\alpha_{\operatorname{bn}}$ to $\Gamma_{b}$, showing that neither is an upper bound for the other. We show that the differences $\Gamma _{b}-\alpha_{\operatorname{bn}}$ and $\alpha_{\operatorname{bn}}-\Gamma_{b}$ are unbounded, the ratio $\alpha_{\operatorname{bn}}/\Gamma_{b}$ is bounded for all graphs, and $\Gamma_{b}/\alpha_{\operatorname{bn}}$ is bounded for bipartite graphs but unbounded in general. | ||
کلیدواژهها | ||
broadcast domination؛ broadcast independence؛ hearing independent broadcast؛ boundary independent broadcast | ||
مراجع | ||
[1] D. Ahmadi, G. H. Fricke, C. Schroeder, S. T. Hedetniemi and R. C. Laskar, Broadcast irredundance in graphs, [14] C. M. Mynhardt and L. Neilson, Boundary independent broadcasts in graphs, J. Combin. Math. Combin. Comput., 116 (2021) 79–100. | ||
آمار تعداد مشاهده مقاله: 123 تعداد دریافت فایل اصل مقاله: 124 |