[1] |
S. Andreev, S. Balandin, and Y. Koucheryavy. Internet of things, smart spaces, and next generation networks and systems. Springer, 2014. [ bib ] |
[2] |
X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. Mllib: Machine learning in apache spark. The Journal of Machine Learning Research, 17(1):1235--1241, 2016. [ bib | DOI ] |
[3] |
M. Belouch, S. El Hadaj, and M. Idhammad. Performance evaluation of intrusion detection based on machine learning using Apache Spark. Procedia Computer Science, 127:1--6, 2018. [ bib | DOI ] |
[4] |
A. Dobson, K. Roy, X. Yuan, and J. Xu. Performance Evaluation of Machine Learning Algorithms in Apache Spark for Intrusion Detection. In 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), pages 1--6. IEEE, 2018. [ bib | DOI ] |
[5] |
G. P. Gupta and M. Kulariya. A Framework for Fast and Efficient Cyber Security Network Intrusion Detection Using Apache Spark. Procedia Computer Science, 93:824--831, 2016. [ bib | DOI ] |
[6] |
D. D. Protić. Review of KDD Cup ‘99, NSL-KDD and Kyoto 2006+ datasets. Vojnotehnički glasnik/Military Technical Courier, 66:580--596, 2018. [ bib | DOI ] |
[7] |
C. Hsieh and T. Chan. Detection DDoS attacks based on neural-network using Apache Spark. In 2016 international conference on applied system innovation (ICASI), pages 1--4. IEEE, 2016. [ bib | DOI ] |
[8] |
D. S. Kumar and M. A. Rahman. Performance Evaluation of Apache Spark Vs MPI: A Practical Case Study on Twitter Sentiment Analysis. Journal of Computer Science, 13(12):781--794, 2017. [ bib | DOI ] |
[9] |
C. Hsieh and T. Chan. Big data analytics for network anomaly detection from netflow data. In 2017 International Conference on Computer Science and Engineering (UBMK), pages 592--597. IEEE, 2017. [ bib | DOI ] |
[10] |
P. Dahiya and D. K. Srivastava. Network Intrusion Detection in Big Dataset Using Spark. Procedia computer science, 132:253--262, 2018. [ bib | DOI ] |
[11] |
N. Marir, H. Wang, G. Feng, B. Li, and M. Jia. Distributed Abnormal Behavior Detection Approach Based on Deep Belief Network and Ensemble SVM Using Spark. IEEE Access, 6:59657 -- 59671, 2018. [ bib | DOI ] |
[12] |
S. V. S. reddy and S. Saravanan. Performance Evaluation of Classification Algorithms in the Design of Apache Spark based Intrusion Detection System. In 2020 5th International Conference on Communication and Electronics Systems (ICCES), pages 443--447. IEEE, 2020. [ bib | DOI ] |
[13] |
Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learning spark: lightning-fast big data analysis. " O'Reilly Media, Inc.", 2015. [ bib ] |
[14] |
M. aharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. E. Gonzalez, S. Shenker, and I. Stoica. Apache spark: a unified engine for big data processing. Communications of the ACM, 59(11):56--65, 2016. [ bib | DOI ] |
[15] |
Holden Karau and Rachel Warren. High performance Spark: best practices for scaling and optimizing Apache Spark. " O'Reilly Media, Inc.", 2017. [ bib ] |
[16] |
S. V. S. reddy and S. Saravanan. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pages 15--28. IEEE, 2012. [ bib | DOI ] |
[17] |
R. E. Wright. Logistic regression. American Psychological Association, page 1995, 2016. [ bib | DOI ] |
[18] |
Classification and regression. https://spark.apache.org/docs/latest/ml-classification-regression.html, Date Accessed: June 29, 2019. [ bib ] |
[19] |
S. Amarappa and SV. Sathyanarayana. Data classification using Support vector Machine (SVM), a simplified approach. Int. J. Electron. Comput. Sci. Eng, pages 435--445, 2014. [ bib | DOI ] |
[20] |
Decision trees - rdd-based api. http://spark.apache.org/docs/latest/mllib-decision-tree.html, Date Accessed: June 29, 2019. [ bib ] |
[21] |
I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In 4th International Conference on Information Systems Security and Privacy, pages 108--116, 2018. [ bib | DOI ] |
[22] |
M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pages 1--6. IEEE, 2009. [ bib | DOI ] |
[23] |
L. T. Heberlein. Statistical problems with statistical-based intrusion detection. Technical report, Technical report, Version1, Net Squared, Inc, 2007. [ bib ] |
[24] |
R. Atefinia and M. Ahmadi. Network intrusion detection using multi-architectural modular deep neural network. The Journal of Supercomputing, 77(4):3571–3593, 2021. [ bib | DOI ] |
[25] |
R. B. Basnet, R. Shash, C. Johnson, L. Walgren, and T. Doleck. Towards Detecting and Classifying Network Intrusion Traffic Using Deep Learning Frameworks. J. Internet Serv. Inf. Secur., 9(4):1--17, 2019. [ bib | DOI ] |
[26] |
Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press, 2011. [ bib ] |
[27] |
A. Dobson, K. Roy, X. Yuan, and J. Xu. Performance Evaluation of Machine Learning Algorithms in Apache Spark for Intrusion Detection. In 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), pages 1--6. IEEE, 2018. [ bib | DOI ] |
[28] |
K. Huancayo Ramos, M. Sotelo Monge, and J. Maestre Vidal. Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16):4501, 2020. [ bib | DOI ] |
|