تعداد نشریات | 43 |
تعداد شمارهها | 1,395 |
تعداد مقالات | 11,510 |
تعداد مشاهده مقاله | 19,092,808 |
تعداد دریافت فایل اصل مقاله | 9,112,240 |
Existence of rational primitive normal pairs over finite fields | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 13 تیر 1401 اصل مقاله (421.54 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.133016.1784 | ||
نویسندگان | ||
Rajendra Sharma ![]() ![]() | ||
1Indian Institute of Technology Delhi | ||
2Mathematics, Research Scholar, Indian Institute of Technology, Hauz Khas, Delhi | ||
3Scientific Analysis Group, Scientist, Defence Research & Development Organisation, Metcalfe House, Delhi | ||
4Mathematics, Assistant Professor, S.S. Govt. P.G. College, Tigaon, Faridabad, Haryana, India | ||
چکیده | ||
For a finite field F_{q^n} and a rational function f =f_1/f_2 ∈ F_{q^n} (x), we present a sufficient condition for the existence of a primitive normal element α ∈ F_{q^n} such that f(α) is also primitive in F_{q^n}, where f(x) is a rational function in F_{q^n}(x) of degree sum m (degree sum of f(x) = f_1(x)/f_2(x) is defined to be the sum of the degrees of f_1(x) and f_2(x)). Additionally, for rational functions of degree sum 4, we proved that there are only 37 and 16 exceptional values of (q, n) when q = 2^k and q = 3^k respectively. | ||
کلیدواژهها | ||
Finite Field؛ Primitive Element؛ Normal Element؛ Character | ||
آمار تعداد مشاهده مقاله: 106 تعداد دریافت فایل اصل مقاله: 4 |