تعداد نشریات | 43 |
تعداد شمارهها | 1,398 |
تعداد مقالات | 11,518 |
تعداد مشاهده مقاله | 19,138,286 |
تعداد دریافت فایل اصل مقاله | 9,121,726 |
Finite coverings of semigroups and related structures | ||
International Journal of Group Theory | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 13 تیر 1401 اصل مقاله (336.75 K) | ||
نوع مقاله: Ischia Group Theory 2020/2021 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.131538.1759 | ||
نویسندگان | ||
Casey R. Donoven ![]() ![]() | ||
1Montana State University Northern | ||
2Binghamton University | ||
چکیده | ||
For a semigroup $S$, the covering number of $S$ with respect to semigroups, $sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $ngeq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well. | ||
کلیدواژهها | ||
Semigroup؛ covering number؛ inverse semigroup؛ monoid | ||
آمار تعداد مشاهده مقاله: 105 تعداد دریافت فایل اصل مقاله: 2 |