تعداد نشریات | 43 |
تعداد شمارهها | 1,686 |
تعداد مقالات | 13,792 |
تعداد مشاهده مقاله | 32,468,328 |
تعداد دریافت فایل اصل مقاله | 12,814,627 |
A Cheeger-Buser-type inequality on CW complexes | ||
International Journal of Group Theory | ||
مقاله 28، دوره 12، شماره 3، آذر 2023، صفحه 197-204 اصل مقاله (398.19 K) | ||
نوع مقاله: Ischia Group Theory 2020/2021 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2022.132100.1773 | ||
نویسنده | ||
Grégoire Schneeberger* | ||
Section de matématiques, University of Geneva | ||
چکیده | ||
We extend the definition of boundary expansion to CW complexes and prove a Cheeger-Buser-type relation between the spectral gap of the Laplacian and the boundary expansion of an orientable CW complex. | ||
کلیدواژهها | ||
Cheeger-Buser inequality؛ Boundary expansion؛ CW complexes | ||
مراجع | ||
[1] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008. [2] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970 195–199. [3] D. Dotterrer, The (co)isoperimetric problem in (random) polyhedra, Thesis (Ph.D.)–University of Toronto (Canada). ProQuest LLC, Ann Arbor, MI, 2013 90 pp. [4] K. Golubev and O. Parzanchevski, Spectrum and combinatorics of two-dimensional Ramanujan complexes, Israel J. Math., 230 (2019) 583–612. [5] M. Gromov, Singularities, expanders and topology of maps, Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal., 20 (2010) 416–526. [6] A. Gundert and M. Szedlák, Higher dimensional discrete Cheeger inequalities, J. Comput. Geom., 6 (2015) 54–71.
[7] A. Gundert and U. Wagner, On Laplacians of random complexes, Computational geometry (SCG’12), ACM, New York, 2012 151–160. [8] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[9] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.), 43 (2006) 439–561. [10] N. Linial and R. Meshulam, Homological connectivity of random 2-complexes, Combinatorica, 26 (2006) 475–487.
[11] A. Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. (N.S.), 49 (2012) 113–162.
[12] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. [13] W. S. Massey, Singular homology theory, Graduate Texts in Mathematics, 70, Springer-Verlag, New York-Berlin, 1980. [14] R. Meshulam and N. Wallach, Homological connectivity of random k-dimensional complexes, Random Structures Algorithms, 34 (2009) 408–417. [15] O. Parzanchevski, High Dimensional Expanders, Ph. D. thesis, Hebrew University of Jerusalem, 2013.
[16] O. Parzanchevski, R. Rosenthal and R. J. Tessler, Isoperimetric inequalities in simplicial complexes, Combinatorica, 36 (2016) 195–227. [17] J. Steenbergen, C. Klivans and S. Mukherjee, A Cheeger-type inequality on simplicial complexes, Adv. in Appl. Math., 56 (2014) 56–77. | ||
آمار تعداد مشاهده مقاله: 409 تعداد دریافت فایل اصل مقاله: 236 |