تعداد نشریات | 43 |
تعداد شمارهها | 1,649 |
تعداد مقالات | 13,393 |
تعداد مشاهده مقاله | 30,186,098 |
تعداد دریافت فایل اصل مقاله | 12,069,384 |
Generalized barred preferential arrangements | ||
Transactions on Combinatorics | ||
مقاله 14، دوره 12، شماره 1، خرداد 2023، صفحه 47-63 اصل مقاله (481.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2022.130037.1894 | ||
نویسندگان | ||
José A. Adell1؛ Beáta Bényi2؛ Venkat Murali3؛ Sithembele Nkonkobe* 4 | ||
1Departamento de Métodos Estadı́sticos, Facultad de Ciencias, Universidad Zaragoza, C. de Pedro Cerbuna, 12, 50009, Zaragoza, Spain | ||
2Department of Hydraulic Engineering, Faculty of Water Sciences, H-6500, Bajcsy-Zsilinszky utca 12–14, University of Public Service Baja, Hungary | ||
3Department of Mathematics, Rhodes University, Grahamstown, 6139, South Africa | ||
4Department of Mathematical Sciences, Sol Plaatje University, Kimberley, 8301, South Africa | ||
چکیده | ||
We investigate a generalization of Fubini numbers. We present the combinatorial interpretation as barred preferential arrangements with some additional conditions on the blocks. We provide a proof for a generalization of Nelsen's Theorem. We consider these numbers from a probabilistic view point and demonstrate how they can be written in terms of the expectation of random descending factorial involving the negative binomial process. | ||
کلیدواژهها | ||
barred preferential arrangements؛ generalized Stirling numbers؛ geometric polynomials؛ negative binomial process | ||
مراجع | ||
[1] J. A. Adell, Differential calculus for linear operators represented by finite signed measures and applications, Acta Math. Hungar., 138 no. 1-2 (2013) 44–82. [2] C. Ahlbach, J. Usatine and N. Pippenger, Barred Preferential Arrangements, Electron. J. Combin., 20 no. 2 (2013) PP 55. [3] H. Belbachir and Y. Djemmada, Congruence for geometric polynomials, Les Annales Rectis, 6 (2009) 37–44. [4] K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. Math. Sci., 23 (2005) 38–49. [5] K. N. Boyadzhiev and A. Dil, Geometric polynomials: properties and applications to series with zeta values, Anal. Math., 42 no. 3 (2016) 203–224. [6] R. B. Corcino, Some theorems on generalized Stirling numbers, Ars Combin., 60 (2001) 273–286. [7] R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, Discrete Dyn. Nat. Soc., (2011) 21 pp. [8] C. B. Corcino, R. B. Corcino, B. Cekim, L. Kargin and S. Nkonkobe, A second type of higher order generalized geometric polynomials and higher order generalized Euler polynomials, Quaest. Math., 45 (2020) 1–19. [9] R. B. Corcino, L. C. Hsu and E. L. Tan, Combinatorial and statistical applications of generalized Stirling numbers, J. Math. Res. Exposition, 21 no. 3 (2001) 337–343. [10] M. E. Dasef and S. M. Kautz, Some sums of some importance, College Math. J., 28 (1997) 52–55. [11] L. Euler, Institutiones calculi differentialis cum ejus usu in analysi finitorum ac doctrina serierum, Impensis academiae imperialis scientiarum Petropolitanae, (1755). Also, another edition, Ticini: in typographeo Petri Galeatii superiorum permissu (1787). Available online at http://eulerarchive.maa.org//pages/E212.html [12] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge University Press, 2009. [13] D. Foata and D. Zeilberger, Graphical Major Indices, J. Comput. Appl. Math., 68 (1996) 79–101. [14] O. A. Gross, Preferential arrangements, Amer. Math. Monthly, 69 no. 1 (1962) 4–8. [15] M. Guan, W. Li, E. Wang, I. Gessel, T. Ferguson, C. Melolidakis, R. B. Nelsen and C. Ion, Elementary Problems: E3059-E3063, Amer. Math. Monthly, 91 (1984) 580–581. [16] L. C. Hsu and P. J. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math., 20 no. 3 (1998) 366–384. [17] L. Kargin and B. Cekim, Higher order generalized geometric polynomials, Turkish J. Math., 42 no. 3 (2018) 887–903. [18] E. Mendelson, Races with ties, Math. Mag., 55 no. 3 (1982) 170–175. [19] M. Mihoubi and S. Taharbouchet, Identities and congruences involving the geometric polynomials, Miskolc Math. Notes, 20 no. 1 (2019) 395–408. [20] R. B. Nelsen, D. E. Knuth, J. C. Binz and G. Williams, E3062, Amer. Math. Monthly, 94 (1987) 376–377. [21] R. B. Nelsen and H. Schmidt, Chains in power sets, Math. Mag., 64 no. 1 (1991) 23–31. [22] S. Nkonkobe, B. B´enyi, R. B. Corcino and C. B. Corcino, A combinatorial analysis of higher order generalised geometric polynomials: A generalisation of barred preferential arrangements, Discrete Math., 343 no. 3 (2020) 12 pp. [23] S. Nkonkobe and V. Murali, A study of a family of generating functions of Nelsen Schmidt type and some identities on restricted barred preferential arrangements, Discrete Math., 340 no. 5 (2017) 1122-1128. [24] N. Pippenger, The hypercube of resistors, asymptotic expansions, and preferential arrangements, Math. Mag., 83 no. 5 (2010) 331–346. [25] N. J. A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org | ||
آمار تعداد مشاهده مقاله: 338 تعداد دریافت فایل اصل مقاله: 300 |