تعداد نشریات | 43 |
تعداد شمارهها | 1,650 |
تعداد مقالات | 13,402 |
تعداد مشاهده مقاله | 30,206,682 |
تعداد دریافت فایل اصل مقاله | 12,075,399 |
The Mostar and Wiener index of alternate Lucas cubes | ||
Transactions on Combinatorics | ||
مقاله 12، دوره 12، شماره 1، خرداد 2023، صفحه 37-46 اصل مقاله (430.95 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2022.130675.1912 | ||
نویسندگان | ||
Ömer Eğecioğlu1؛ Elif Sayg2؛ Zülfükar Saygi* 3 | ||
1Department of Computer Science, University of California Santa Barbara, CA 93106, USA | ||
2Department of Mathematics and Science Education, Hacettepe University, 06800, Ankara, Turkey | ||
3Department of Mathematics, TOBB University of Economics and Technology, 06560, Ankara, Turkey | ||
چکیده | ||
The Wiener index and the Mostar index quantify two distance related properties of connected graphs: the Wiener index is the sum of the distances over all pairs of vertices and the Mostar index is a measure of how far the graph is from being distance-balanced. These two measures have been considered for a number of interesting families of graphs. In this paper, we determine the Wiener index and the Mostar index of alternate Lucas cubes. Alternate Lucas cubes form a family of interconnection networks whose recursive construction mimics the construction of the well-known Fibonacci cubes. | ||
کلیدواژهها | ||
Keywords: Hypercube؛ Fibonacci cube؛ Alternate Lucas cube؛ Mostar index؛ Wiener index | ||
مراجع | ||
[1] M. O. Albertson, The irregularity of a graph, Ars Combin., 46 (1997) 219–225. [2] A. Ali and T. Doˇsli´c, Mostar index: Results and perspectives, Applied Mathematics and Computation, 404 (2021) 126–245. [3] Y. Alizadeh, E. Deutsch and S. Klavˇzar, On the irregularity of π-permutation graphs, Fibonacci cubes, and trees, Bull. Malays. Math. Sci. Soc., 43 (2020) 4443–4456. [4] Y. Alizadeh, K. Xu and S. Klavˇzar, On the Mostar index of trees and product graphs, Filomat, 35 (2021) 4637–4643. [5] J. L. Brown, Unique representation of integers as sums of distinct Lucas numbers, Fibonacci Quart., 7 (1969) 243–252. [6] T. Doˇsli´c, I. Martinjak, R. Skrekovski, S.Tipuri´c Spuˇzevi´c and I. Zubac, Mostar index, ˇ J. Math. Chem., 56 (2018) 2995–3013. [7] O. E˘gecio˘glu, E. Saygı and Z. Saygı, The irregularity polynomials of Fibonacci and Lucas cubes, ¨ Bull. Malays. Math. Sci. Soc., 44 (2021) 753–765. [8] O. E˘gecio˘glu, E. Saygı and Z. Saygı, The Mostar index of Fibonacci and Lucas cubes, ¨ Bull. Malays. Math. Sci. Soc., 44 (2021) 3677–3687. [9] O. E˘gecio˘glu, E. Saygı and Z. Saygı, Alternate Lucas Cubes, ¨ Internat. J. Found. Comput. Sci., 32 (2021) 871–899. [10] F. Gao, K. Xu and T. Doˇsli´c, On the difference of Mostar index and irregularity of graphs, Bull. Malays. Math. Sci. Soc., 44 (2021) 905–926. [11] W.-J. Hsu, Fibonacci cubes–a new interconnection technology, IEEE Trans. Parallel Distrib. Syst., 4 (1993) 3–12. [12] J. Jerebic, S. Klavˇzar and D. F. Rall, Distance-balanced graphs, Ann. Comb., 12 (2008) 71–79. [13] S. Klavˇzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25 (2013) 505–522. [14] S. Klavˇzar and M. Mollard, Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes, MATCH Commun. Math. Comput. Chem., 68 (2012) 311–324. [15] E. Munarini, C. P. Cippo and N. Zagaglia Salvi, On the Lucas cubes, Fibonacci Quart., 39 (2001) 12–21. [16] OEIS Foundation Inc. (2021), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A215602 | ||
آمار تعداد مشاهده مقاله: 345 تعداد دریافت فایل اصل مقاله: 308 |