NEW CRITERIA FOR SOLVABILITY, NILPOTENCY AND OTHER PROPERTIES OF FINITE GROUPS IN TERMS OF THE ORDER ELEMENTS OR SUBGROUPS

MARCEL HERZOG, PATRIZIA LONGOBARDI, MERCEDE MAJ*

ABSTRACT. In this survey we shall describe some recent criteria for solvability, nilpotency and other properties of finite groups G, based either on the orders of the elements of G or on the orders of the subgroups of G.

1. Introduction

In this survey we shall describe some recent criteria for solvability, nilpotency and other properties of finite groups G, based either on the orders of the elements of G or on the orders of the subgroups of G. The various results will be described in the following Sections 2, 3 and 4, each dedicated to one of the above mentioned properties of finite groups.

2. New criteria for solvability

We start with two criteria for solvability which were proved in our paper [13]. The first criterion was:

Theorem 2.1. Let G be a finite group of order n containing a subgroup A of prime power index p^k. Moreover, suppose that A contains a normal cyclic subgroup H and A/H is a cyclic group of order 2^r for some non-negative integer r. Then G is a solvable group.
Notice that since \([G : A] = p^s \), it follows that \(G = AB \), where \(B \) is a \(p \)-group. We continue with three remarks concerning this result. Here and later, \(G \) will denote a finite group.

Remark 2.2. Theorem 2.1 is a generalization of a special case of the following result of B. Huppert and N. Ito (see Scott’s book [22, Theorem 13.10.1]):

Theorem 2.3. If \(G = AB \), where \(B \) is a nilpotent subgroup of \(G \) and \(A \) is a subgroup of \(G \) containing a cyclic subgroup \(H \) of index \([A : H] \leq 2 \), then \(G \) is solvable.

If \(B \) is a \(p \)-group, then this result corresponds to Theorem 2.1 with \(1 \leq 2^r \leq 2 \), while in our case \(r \) is not bounded.

Remark 2.4. For the proof of Theorem 2.1 we used the following Szep’s conjecture, which was proved by Elsa Fisman and Zvi Arad in [10].

Theorem 2.5. If \(G = AB \), where \(A \) and \(B \) are subgroups of \(G \) with non-trivial centers, then \(G \) is not a non-abelian simple group.

Remark 2.6. The proof of Theorem 2.5 relies on the classification of finite simple groups. Therefore our proof of Theorem 2.1 also relies on that classification. On the other hand, the proof of Theorem 2.3 by Huppert and Ito does not rely on the classification.

Before continuing, we need to introduce some notation, which will be used also in the other sections. First,

\[
\psi(G) = \sum_{x \in G} o(x),
\]

where \(o(x) \) denotes the order of \(x \). This notation was introduced by H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs in their 2009 paper [1]. They proved the following theorem:

Theorem 2.7. If \(|G| = n \) and \(C_n \) denotes the cyclic group of order \(n \), then

\[
\psi(G) \leq \psi(C_n).
\]

In [14], we determined the exact upper bound for \(\psi(G) \) for non-cyclic groups \(G \). We proved the following theorem:

Theorem 2.8. If \(G \) is non-cyclic group of order \(n \), then

\[
\psi(G) \leq \frac{7}{11} \psi(C_n),
\]

and equality holds for the groups \(G = C_k \times C_2 \times C_2 \), where \(k \) denotes an arbitrary odd integer.

Later we proved that equality holds only for the above mentioned groups. Our second criterion for solvability in [13] was:

\[
\text{if } |G| = n \text{ and } \psi(G) \geq \frac{1}{6.68} \psi(C_n),
\]

http://dx.doi.org/10.22108/IJGT.2022.131888.1766
then G is solvable. Since $\psi(A_5) = \frac{211}{1617}\psi(C_{60}) < \frac{1}{0.68}\psi(C_{60})$, we conjectured that if $\psi(G) > \frac{211}{1617}\psi(C_n)$, then G is solvable and this result is the best possible. And indeed, M. Baniasad Azad and B. Khosravi proved in [3] the following theorem:

Theorem 2.9. If $|G| = n$ and $\psi(G) > \frac{211}{1617}\psi(C_n)$, then G is solvable and this lower bound is the best possible.

And what can we say about a non-solvable group G of order n satisfying $\psi(G) = \frac{211}{1617}\psi(C_n)$?

In this case, A. Bahri, B. Khosravi and Z. Akhlaghi proved in [2] the following theorem:

Theorem 2.10. Let G be a non-solvable group of order n. Then

$$\psi(G) = \frac{211}{1617}\psi(C_n)$$

if and only if $G = A_5 \times C_m$, where $(m, 30) = 1$.

The next criterion for solvability will be based on the orders of the subgroups of G.

We shall consider now the following function of G:

$$\sigma_1(G) = \frac{1}{|G|} \sum_{H \leq G} |H|,$$

which was introduced by T. De Medts and M. Tărnăuceanu in their paper [9].

Tărnăuceanu conjectured in [23] that

$$\text{if } \sigma_1(G) < \frac{117}{20}, \text{ then } G \text{ is solvable.}$$

Since $\sigma_1(A_5) = \frac{117}{20}$, this upper bound is the best possible.

In [15], we proved the Tărnăuceanu’s conjecture. We proved the following theorem:

Theorem 2.11. If G is a finite group and

$$\sigma_1(G) = \frac{1}{|G|} \sum_{H \leq G} |H| < \frac{117}{20},$$

then G is solvable and this upper bound is the best possible.

Finally, we shall consider another function of G:

$$o(G) = \frac{\psi(G)}{|G|}.$$

In their paper [19], E. I. Khukhro, A. Moretó and M. Zarrin proposed the following conjecture:

Conjecture 1. Let G be a finite group. If

$$o(G) < o(A_5),$$

then G is solvable.

In our recent paper [16], we proved that this conjecture is true. In fact, we proved the following theorem:
Theorem 2.12. Let G be a finite group. If
\[o(G) < o(A_5), \]
then G is solvable.
Moreover, if $o(G) = o(A_5)$, then $G = A_5$.

We pass now to the section dealing with criteria for nilpotency.

3. New criteria for nilpotency

In [24], M. Tărnăuceanu proved the following theorem:

Theorem 3.1. If G is a finite group and
\[\sigma_1(G) = \frac{1}{|G|} \sum_{H \leq G} |H| < 2 + \frac{4}{|G|}, \]
then G is a nilpotent group.

Inspired by this result, he asked whether there exists a constant $c > 2$ such that if $\sigma_1(G) < c$, then G is nilpotent. In the same paper Tărnăuceanu showed that such c does not exist. In fact, he constructed an infinite sequence of non-nilpotent groups (G_n), such that $\sigma_1(G_n)$ approaches 2 monotonically from above, as n tends to infinity.

Since a finite nilpotent group is a direct product of its Sylow subgroups, it follows that if G is nilpotent and $x, y \in G$ are of co-prime orders, then $o(xy) = o(x)o(y)$. But is the converse of this statement true? This is a natural question and it is very surprising that only in 2018 this fact was proved by Benjamin Baumslag and James Wiegold, using only elementary methods. They proved in [8] the following theorem.

Theorem 3.2. A finite group G is nilpotent if and only if
\[o(xy) = o(x)o(y) \]
for any $x, y \in G$ of co-prime orders.

For some results related to this theorem see for instance [5], [6], [7], [21].

Using the function $\psi(G) = \sum_{x \in G} o(x)$, Tărnăuceanu proved in [25] the following theorem.

Theorem 3.3. If $|G| = n$ and
\[\psi(G) > \frac{13}{21} \psi(C_n), \]
then G is nilpotent. Moreover, $\psi(G) = \frac{13}{21} \psi(C_n)$ if and only if
\[G = S_3 \times C_m \quad \text{with} \quad (m, 6) = 1. \]

It is interesting to notice that in our paper [17], dealing with non-cyclic groups of order $2m$, m odd, we proved the following related result (see [17, Theorem 7]):

\text{http://dx.doi.org/10.22108/IJGT.2022.131888.1766}
Theorem 3.4. If G be a non-cyclic group of order $n = 2m$, with m an odd integer, then
\[\psi(G) \leq \frac{13}{21} \psi(C_n). \]
Moreover, $\psi(G) = \frac{13}{21} \psi(C_n)$ if and only if $m = 3m_1$ with $(m_1, 3) = 1$ and $G = S_3 \times C_{m_1}$.

Since by [17, Corollary 4] $\psi(G) < \frac{1}{2} \psi(C_n)$ if $n = |G|$ is odd, the above two theorems yield the following result:

- If G is a non-cyclic group of order n and $\psi(G) > \frac{13}{21} \psi(C_n)$, then G is a nilpotent group with n divisible by 4.

But Tărnăuceanu proved more. He proved the following theorem (see [25, Corollary 1.2]):

Theorem 3.5. If $|G| = n$ and
\[\psi(G) > \frac{13}{21} \psi(C_n), \]
then
\[\frac{\psi(G)}{\psi(C_n)} \in \left\{ \frac{27}{43}, \frac{7}{11}, 1 \right\} \]
and one of the following statements holds, respectively:
1. $G = Q_8 \times C_m$, where m is odd;
2. $G = (C_2 \times C_2) \times C_m$, where m is odd;
3. G is cyclic.

Tărnăuceanu’s Theorems 3.3 and 3.5 imply the following result:

Theorem 3.6. The four largest values of the fraction $\frac{\psi(G)}{\psi(C_G)}$ on the class of finite groups G are:
\[1, \frac{7}{11}, \frac{27}{43}, \frac{13}{21} \]
in the decreasing order.

Another interesting criterion for nilpotency is the following theorem of Tărnăuceanu in [26]. He defined the function
\[\xi(G) = |\{a \in G \mid o(a) = exp(G)\}|, \]
and he proved that

Theorem 3.7. A finite group G is nilpotent if and only if $\xi(S) \neq 0$ for any section S of G.

Recall that a section of a group G is a homomorphic image of a subgroup of G. Moreover, if G is nilpotent, then $\xi(G) > 0$.

The proof of Theorem 3.7 relies on the structure of minimal non-nilpotent groups. Tărnăuceanu also presented examples of non-nilpotent groups G which satisfy $\xi(G) \neq 0$ and even $\xi(H) \neq 0$ for all subgroups H of G. So considering only subgroups of G is not sufficient.
Another interesting characterization of nilpotency was proved by Martino Garonzi and Massimiliano Patassini in their paper [12]. Let \(\varphi \) denote the Euler totient function. They proved the following theorem:

Theorem 3.8. Let \(r < 0 \) be a real number and let \(|G| = n \). Then

\[
\sum_{x \in G} \left(\frac{o(x)}{\varphi(o(x))} \right)^r \geq \sum_{x \in C_n} \left(\frac{o(x)}{\varphi(o(x))} \right)^r
\]

and equality holds if and only if \(G \) is nilpotent. In particular, \(G \) is nilpotent if and only if

\[
\sum_{x \in G} \left(\frac{\varphi(o(x))}{o(x)} \right)^r = \sum_{x \in C_n} \left(\frac{\varphi(o(x))}{o(x)} \right)^r.
\]

It is worthwhile to mention that if \(G \) is a nilpotent group of order \(n \), then

\[
\sum_{x \in G} \left(\frac{o(x)}{\varphi(o(x))} \right)^s = \sum_{x \in C_n} \left(\frac{o(x)}{\varphi(o(x))} \right)^s
\]

for all real numbers \(s \) and by Theorem 3.8 the converse is true for \(s < 0 \). It had been conjectured that the converse is true for all real numbers \(s \neq 0 \).

In [27], Tărnăuceanu considered the following function of \(G \):

\[
\psi''(G) = \frac{\psi(G)}{|G|^2}.
\]

Among other results, some of which will be mentioned later, he proved the following theorem:

Theorem 3.9. If

\[
\psi''(G) > \frac{13}{36} = \psi''(S_3),
\]

then \(G \) is nilpotent.

Which groups satisfy \(\psi''(G) = \frac{13}{36} \)? This question will be considered in the next section.

Finally, we shall describe an amusing connection between group theory and number theory, discovered by Tom De Medts and Marius Tărnăuceanu. Let \(n \) denote a positive integer and let \(\sigma(n) \) denote the sum of the divisors of \(n \):

\[
\sigma(n) = \sum_{d | n} d.
\]

Recall that \(n \) is a deficient number if \(\sigma(n) < 2n \) and a perfect number if \(\sigma(n) = 2n \). Thus the set consisting of both the deficient numbers and the perfect numbers is characterized by the inequality \(\sigma(n) \leq 2n \).

Now let \(G \) be a finite group and denote by \(C(G) \) the set of all cyclic subgroups of \(G \). Denote by \(S_1 \) and \(S_2 \) the following classes of groups:

\[
S_1 = \{ G \mid \sum_{H \leq G} |H| \leq 2|G| \}
\]

http://dx.doi.org/10.22108/IJGT.2022.131888.1766
and

\[S_2 = \{ G \mid \sum_{H \in C(G)} |H| \leq 2|G| \} \]

Clearly \(S_1 \subseteq S_2 \) and

\[\sum_{H \leq G} |H| = \sum_{H \in C(G)} |H| \]

if and only if \(G \) is a cyclic group.

De Medts and Tărnăuceanu proved in \([9]\) the following theorem.

Theorem 3.10. Let \(G \) be a group of order \(n \). Then the following statements hold.

1. \(G \in S_1 = \{ G \mid \sum_{H \leq G} |H| \leq 2|G| \} \) if and only if \(G \) is cyclic and \(n \) is either a deficient or a perfect number.
2. \(G \) is a nilpotent group belonging to \(S_2 = \{ G \mid \sum_{H \in C(G)} |H| \leq 2|G| \} \) if and only if \(n \) is either a deficient or a perfect number.

4. **Recent criteria for some other types of groups**

In this section we shall list some criteria for a group to be cyclic, abelian, supersolvable and solvable.

In \([27]\), Tărnăuceanu proved the following theorem.

Recall that \(\psi(G) = \sum_{x \in G} o(x) \) and \(\psi^{\prime}(G) = \psi(G) |G|^2 \).

Theorem 4.1. Let \(G \) be a finite group. Then the following statements hold.

1. If \(\psi^{\prime}(G) > \frac{7}{16} = \psi^{\prime}(C_2 \times C_2) \), then \(G \) is cyclic.
2. If \(\psi^{\prime}(G) > \frac{27}{64} = \psi^{\prime}(Q_8) \), then \(G \) is abelian.
3. If \(\psi^{\prime}(G) > \frac{13}{36} = \psi^{\prime}(S_3) \), then \(G \) is nilpotent.
4. If \(\psi^{\prime}(G) > \frac{31}{144} = \psi^{\prime}(A_4) \), then \(G \) is supersolvable.
5. If \(\psi^{\prime}(G) > \frac{211}{3600} = \psi^{\prime}(A_5) \), then \(G \) is solvable.

Recall that item (3) was mentioned in Section 3 dealing with nilpotent groups. In this paper \([27]\) Tărnăuceanu stated the following open problem: determine all finite groups \(G \) for which \(\psi^{\prime}(G) \) takes on one of the values which appear in Theorem 4.1. He mentions that given a rational number \(c \in (0, 1) \), the main difficulty in finding groups \(G \) satisfying \(\psi^{\prime}(G) = c \) is to solve this problem for cyclic groups \(G \).

A partial solution to this problem was supplied by M. Baniasad Azad, B. Khosravi and M. Jafarpour in their paper \([4]\). They proved the following theorem.

Theorem 4.2. Let \(G \) be a finite group. Then the following statements hold.

1. If \(G \) is non-cyclic and \(\psi^{\prime}(G) = \frac{7}{16} \), then \(G = C_2 \times C_2 \).
2. If \(G \) is non-cyclic and \(\psi^{\prime}(G) = \frac{27}{64} \), then \(G = Q_8 \).
If G is non-cyclic and $\psi''(G) = \frac{13}{36}$, then $G = S_3$.

(4) If G is non-supersolvable and $\psi''(G) = \frac{31}{144}$, then $G = A_4$.

(5) If G is non-solvable and $\psi''(G) = \frac{211}{3600}$, then $G = A_5$.

We shall conclude our treatment of the function $\psi''(G) = \frac{\psi(G)}{|G|^2}$, with the following two recent results.

The first result is the following theorem, which appeared in the paper [4] of M. Baniasad Azad, B. Khosravi and M. Jafarpour mentioned above.

Theorem 4.3. Let $p > 5$ be a prime and suppose that G is not a p-nilpotent group. Denote by D_{2p} the dihedral group of order $2p$. Then

$$\psi''(G) \leq \frac{p^2 + p + 1}{4p^2} = \psi''(D_{2p}),$$

and equality holds if and only if $G = D_{2p}$.

The second result is the following theorem of M. Lazorec and M. Tărnăuceanu, which appeared in their paper [20].

Theorem 4.4. The set $\text{Im}\psi'' = \{\psi''(G) \mid G$ is a finite group $\}$ is dense in $[0, 1]$.

The final topic of this survey are the cyclic subgroups of G. First we shall define three relevant functions ((1) and (3) already introduced) (see [11]).

Definition 4.5. Let G be a finite group.

(1) $C(G)$ denotes the set of all cyclic subgroups of G.

(2) $\alpha(G) = \frac{|C(G)|}{|G|}$.

(3) $o(G)$ denotes the average order in G. Hence

$$o(G) = \frac{1}{|G|} \sum_{x \in G} o(x) = \frac{\psi(G)}{|G|}.$$

First we notice that in the multiset $\{\langle x \rangle \mid x \in G\}$, each $\langle x \rangle$ appears exactly $\varphi(o(x))$ times, where φ still denotes the Euler totient function. Consequently, each $x \in G$ contributes $\frac{1}{\varphi(o(x))}$ to $|C(G)|$ and therefore

$$|C(G)| = \sum_{x \in G} \frac{1}{\varphi(o(x))}.$$

Hence $|C(G)|$, $\alpha(G) = \frac{|C(G)|}{|G|}$ and $o(G) = \frac{1}{|G|} \sum_{x \in G} o(x)$ are completely determined by the orders of the elements of the group G.

In his paper [18], Andrei Jaikin-Zapirain proved the following result concerning $o(G) = \frac{1}{|G|} \sum_{x \in G} o(x)$ (see [18, Lemma 2.7 and Corollary 2.10]).

Theorem 4.6. If G is a finite group, then

$$k(G) \geq o(G) \geq o(Z(G)),$$

where $k(G)$ denotes the number of the conjugacy classes of G.

http://dx.doi.org/10.22108/IJGT.2022.131888.1766
In his paper [28], Tărnăuceanu proved that the function \(\alpha(G) = \frac{|C(G)|}{|G|} \) satisfies the reversed inequality:

Theorem 4.7. If \(G \) is a finite group, then

\[\alpha(G) \leq \alpha(Z(G)). \]

He also determined which groups satisfy the equality. In particular, he showed that such groups are 4-abelian, namely \((xy)^4 = x^4y^4\) holds for all \(x, y \in G \).

Acknowledgments

This work was supported by the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA - INdAM), Italy.

References

http://dx.doi.org/10.22108/IJGT.2022.131888.1766

M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of order $2m$ with m odd, Comm. Algebra, 47 (2019) 2035–2048.

Marcel Herzog
Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
Email: herzogm@tauex.tau.ec.il

Patrizia Longobardi
Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
Email: plongobardi@unisa.it

Mercede Maj
Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
Email: mmaj@unisa.it

http://dx.doi.org/10.22108/IJGT.2022.131888.1766