تعداد نشریات | 44 |
تعداد شمارهها | 1,473 |
تعداد مقالات | 12,039 |
تعداد مشاهده مقاله | 22,276,138 |
تعداد دریافت فایل اصل مقاله | 9,788,123 |
On eigenspaces of some compound complex unit gain graphs | ||
Transactions on Combinatorics | ||
مقاله 3، دوره 11، شماره 3، آذر 2022، صفحه 131-152 اصل مقاله (594.22 K) | ||
نوع مقاله: Workshop on Graphs, Topology and Topological Groups, Cape Town, South Africa | ||
شناسه دیجیتال (DOI): 10.22108/toc.2021.130013.1888 | ||
نویسندگان | ||
Francesco Belardo؛ Maurizio Brunetti* | ||
Maurizio Brunetti Dipartimento di Matematica e Applicazioni, Università di Napoli ‘Federico II’, Naples, Italy | ||
چکیده | ||
Let $\mathbb T$ be the multiplicative group of complex units, and let $L(\Phi)$ denote the Laplacian matrix of a nonempty $\mathbb{T}$-gain graph $\Phi=(\Gamma, \mathbb{T}, \gamma)$. The gain line graph $\mathcal L(\Phi)$ and the gain subdivision graph $\mathcal S(\Phi)$ are defined up to switching equivalence. We discuss how the eigenspaces determined by the adjacency eigenvalues of $\mathcal L(\Phi)$ and $\mathcal S(\Phi)$ are related with those of $L(\Phi)$. | ||
کلیدواژهها | ||
Complex unit gain graph؛ line graph؛ subdivision graph؛ oriented gain graph؛ voltage graph | ||
مراجع | ||
[1] A. Alazemi, F. Belardo, M. Brunetti, M. Andeli´c and C. M. da Fonseca, Line and subdivision graphs determined by T4-gain graphs, Mathematics, 7 no. 10 (2019). [2] F. Belardo and M. Brunetti, Line graphs of complex unit gain graphs with least eigenvalue −2, Electron. J. Linear Algebra, 37 (2021) 14–30. [3] F. Belardo, M. Brunetti, M. Cavaleri and A. Donno, Godsil-McKay switching for mixed and gain graphs over the circle group, Linear Algebra Appl., 614 (2021) 256–269. [4] F. Belardo, M. Brunetti and A. Ciampella, Signed bicyclic graphs minimizing the least Laplacian eigenvalue, Linear Algebra Appl., 557 (2018) 201–233. [5] F. Belardo, M. Brunetti and N. Reff, Balancedness and the least Laplacian eigenvalue of some complex unit gain graphs, Discuss. Math. Graph Theory, 40 no. 2 (2020) 417–433. [6] F. Belardo, E. M. Li Marzi and S. K. Simi´c, Signed line graphs with least eigenvalue −2: the star complement technique, Discrete Appl. Math., 207 (2016) 29–38. [7] F. Belardo, I. Sciriha and S. K. Simi´c, On eigenspaces of some compound signed graphs, Linear Algebra Appl., 509 (2016) 19–39. [8] F. Belardo, Z. Stani´c and T. Zaslavsky, Total graph of a signed graph, Math. Contemp., in press (2022), doi:https: //doi.org/10.26493/1855-3974.2842.6b5. [9] M. Cavaleri, D. D’Angeli and A. Donno, A group representation approach to the balance of gain graph, J. Algebr. Comb., 54 (2021) 265–293. [10] M. Cavaleri, D. D’Angeli and A. Donno, Characterizations of line graphs in signed and gain graphs, Eur. J. Comb., 102 (2022). [11] M. Cavaleri, D. D’Angeli and A. Donno, Gain-line graphs via G-phases and group representations, Linear Algebra Appl., 613 (2021) 256–269. [12] M. Cavaleri and A. Donno, On cospectrality of gain graphs, available at arXiv:2111.12428.
[13] D. Cvetkovi´c, P. Rowlinson and S. Simi´c, Eigenspaces of Graphs, Encyclopedia of Mathematics and its Applications, 66, Cambridge University Press, Cambridge, 1997. [14] D. Cvetkovi´c, P. Rowlinson and S. K. Simi´c, Graphs with least eigenvalue −2: The star complement technique, Journal of Algebraic Comb., 14 (2001) 5–16. [15] D. Cvetkovi´c, P. Rowlinson and S. Simi´c, Spectral Generalizations of Line Graphs, On graphs with least eigenvalue −2, Cambridge University Press, 2004. [16] K. Guo and B. Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory, 85 no. 1 (2017) 217–248. [17] S. He, R.-X. Hao and F. Dong, The rank of a complex unit gain graph in terms of the matching number, Linear Algebra Appl., 589 (2020) 158–185. [18] M. Kannan, N. Kumar and S. Pragada, Bounds for the extremal eigenvalues of gain Laplacian matrices, Linear Algebra Appl., 625 (2021) 212–240. [19] B. Mohar, A new kind of Hermitian matrices for digraphs, Linear Algebra Appl., 584 (2020) 343–352.
[20] S. Li and W. Wei, The multiplicity of an Aα-eigenvalue: A unified approach for mixed graphs and complex unit gain graphs, Discrete Math., 343 no. 8 (2020). [21] L. Lu, J. Wang and Q. Huang, Complex unit gain graphs with exactly one positive eigenvalue, Linear Algebra Appl., 608 (2021) 270–281. [22] N. Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl., 436 no. 9 (2012) 3165–3176.
[23] N. Reff, Oriented gain graphs, line graphs and eigenvalues, Linear Algebra Appl., 506 (2016) 316–328.
[24] I. Sciriha and S. K. Simi´c, On eigenspaces of some compound graphs, in: Recent Results in Designs and Graphs: A Tribute to Lucia Gionfriddo, Quaderni di Matematica, 28 (2013) 403–417. [25] Y. Wang, S.-C. Gong and Y.-Z. Fan, On the determinant of the Laplacian matrix of a complex unit gain graph, Discrete Math., 341 no. 1 (2018) 81–86. [26] P. Wissing and E. van Dam, Spectral Fundamentals and Characterizations of Signed Directed Graphs, J. Comb. Theory Ser. A, 187 (2022). [27] T. Zaslavsky, Biased graphs. I: Bias, balance, and gains, J. Combin. Theory Ser. B, 47 (1989) 32–52.
[28] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electron. J. Combin., Dynamic Surveys in Combinatorics, 5 (1998) 124 pp. | ||
آمار تعداد مشاهده مقاله: 214 تعداد دریافت فایل اصل مقاله: 124 |