تعداد نشریات | 43 |
تعداد شمارهها | 1,651 |
تعداد مقالات | 13,405 |
تعداد مشاهده مقاله | 30,214,597 |
تعداد دریافت فایل اصل مقاله | 12,076,516 |
Peripheral Hosoya polynomial of composite graphs | ||
Transactions on Combinatorics | ||
مقاله 1، دوره 11، شماره 2، شهریور 2022، صفحه 63-76 اصل مقاله (468.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2021.127151.1813 | ||
نویسندگان | ||
Anteneh Alemu Ali؛ Kishori P. Narayankar* | ||
Department of Mathematics, Mangalore University, Mangalore-574199, India | ||
چکیده | ||
Peripheral Hosoya polynomial of a graph $G$ is defined as, \begin{align*} &PH(G,\lambda)=\sum_{k\geq 1}d_P(G,k)\lambda^k,\\ \text{where $d_P(G,k)$ is the number} &\text{ of pairs of peripheral vertices at distance $k$ in $G$.} \end{align*} Peripheral Hosoya polynomial of composite graphs viz., $G_1\times G_2$ the Cartesian product, $G_1+G_2$ the join, $G_1[G_2]$ the composition, $G_1\circ G_2$ the corona and $G_1\{G_2\}$ the cluster of arbitrary connected graphs $G_1$ and $G_2$ are computed and their peripheral Wiener indices are stated as immediate consequences. | ||
کلیدواژهها | ||
Peripheral Hosoya polynomial؛ Composite graph؛ Peripheral Wiener index؛ Hosoya polynomial؛ Wiener Index | ||
مراجع | ||
[1] W. Imrich and S. Klavzar, Product graphs: structure and recognition, With a foreword by Peter Winkler. Wiley- [2] F. Harary, Graph Theory, 2nd printing, (Addison-Wesley, Reading, MA,1971). [3] R. Frucht and F. Harary, On the Corona of Two Graphs, Aequationes Math., 4 (1970) 322–325. [4] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley Publishing Company, Advanced Book Program, [5] H. Hosoya, On some counting polynomials in chemistry. Discrete Appl. Math., 19 (1988) 239–257. [6] K. P. Narayankar, S. B. Lokesh, S. S. Shirkol and H. S. Ramane, Terminal Hosoya polynomial of thorn graphs, [7] I. Gutman, B. Furtula and M. Petrović, Terminal Wiener index, J. Math. Chem., 46 (2009) 522–531. [8] Keerthi G. Mirajkar and B. Pooja, On the Hosoya polynomial and Wiener index of jump graph, Jordan J. Math. [9] G. Jayalalitha, M. Raji and S. Senthil, Hosoya polynomial and wiener index of molecular graph of naphthalene [10] K. P. Narayankar, S. Lokesh, V. Mathad and I. Gutman, Hosoya polynomial of Hanoi graphs, Kragujevac J. Math., [11] D. Shubhalakshimi, Distance parametrs in graphs and its applications, Mangalore University, Mangalore, India, [12] K. P. Narayankar and S. B. Lokesh, Peripheral wiener index of a graph. Commun. Comb. Optim., 2 (2017) 43–56. [13] H. Hua, On the peripheral Wiener index of graphs, Discrete Appl. Math., 258 (2019) 135–142. [14] Y-H Chen, H. Wang and X-D Zhang, Peripheral wiener index of trees and related questions, Discrete Appl. Math., [15] A. Kahsay and K. P. Narayankar, Peripheral wiener index of graph operations, Bull. Int. Math. Virtual Inst., 9 [16] K. P. Narayankar, A. Kahsay and S. Klavzar, On peripheral wiener index: line graphs, zagreb index, and cut [17] K. P. Narayankar and A. Ali, Peripheral Hosoya polynomial of thorn graphs, Indian J. Discrete Math., 6 (2020) [18] K. P. Narayankar, S. B. Lokesh, D. Shubhalakshimi and H. S. Ramane, Peripheral path index polynomial, Indian [19] A. J. Schwenk, Computing the characteristic polynomial of a graph, Graphs and combinatorics (Proc. Capital Conf., [20] Y. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math., 135 (1994) 359–365. [21] D. Stevanović, Hosoya polynomial of composite graphs, Discrete Math., 235 (2001) 237–244. | ||
آمار تعداد مشاهده مقاله: 739 تعداد دریافت فایل اصل مقاله: 1,036 |