تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,329 |
تعداد مشاهده مقاله | 29,901,799 |
تعداد دریافت فایل اصل مقاله | 11,959,341 |
عوامل شایع بیماری شانکر باکتریای زردآلو از استان همدان | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
زیست شناسی میکروبی | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مقاله 10، دوره 10، شماره 40، دی 1400، صفحه 105-113 اصل مقاله (2.32 M) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نوع مقاله: پژوهشی- انگلیسی | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
شناسه دیجیتال (DOI): 10.22108/bjm.2021.128160.1380 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نویسندگان | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
فرزانه بنی بیات1؛ غلام خداکرمیان* 2؛ دوستمراد ظفری2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1دانش آموخته همدان، دانشگاه بوعلی سینا، دانشکده کشاورزی، گروه گیاه پزشکی، همدان، ایران | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2استاد گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
چکیده | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مقدمه: استان همدان بهدلیل شرایط آبوهوایی مناسب یکی از مهمترین مناطق برای کاشت درختان هستهدار مانند زردآلو (Prunus armeniaca) است. بیماری شانکر درختان هستهدار ناشی ازPseudomonas syringae pv. syringae یکی از جدیترین بیماریها در این استان، ایران و سراسر جهان است. مطالعه بهمنظور شناسایی عامل بیماری انجام شد. مواد و روشها: نمونههای زردآلوی بیمار در اوایل بهار و اواخر پاییز سال 1397 جمعآوری شدند. از نمونههای جمعآوریشده، 130 استرین باکتریایی جداسازی شدند که 65 استرین براساس رنگ و نوع پرگنهها برای مطالعات بیشتر انتخاب شدند. از روش SDS-PAGE برای گروهبندی استرینهای نماینده استفاده شد. بیماریزایی استرینها در نهالهای زردآلو در شرایط گلخانه بررسی شد. استرینهای مطالعهشده براساس ویژگیهای فنوتیپی، با استفاده از روشهای استاندارد باکتریشناسی و بررسی توالی ژن 16S rRNAشناسایی شدند. نتایج: 30 استرین، حساسیت زیادی روی برگهای شمعدانی نشان دادند. با توجه به الگوی پروتئینهای محلول سلولی روی ژل پلیاکریلآمید، استرینها در 7 گروه قرار گرفتند. نتیجة بلاست توالی ژن 16S rRNA از این استرین، تشابه 7/98 درصد با P. syringae NCPPB 281 را نشان داد. استرین دیگر (استرین FB46) بهدلیل تشابه 33/95 درصد با Pantoea agglomerans RSG19 توسط بلاست توالی ژن 16S rRNA، بهعنوان P. agglomerans شناخته شد. بحث و نتیجهگیری: نتایج بهدستآمده با یافتههای واصبی و همکاران مطابقت دارد. آنها P. syringae را بهعنوان عامل بیماری شانکر زردآلو در استان آذربایجان شرقی جدا کردند. همچنین، P. agglomerans بهعنوان یکی از عوامل مرتبط با میوههای هستهدار، میوههای دانهدار و درختان گردو در استان البرز گزارش شده است. این نخستین گزارش از وجود Pseudomonas syringae بهعنوان عامل بیماری شانکر زردآلو در استان همدان است و باکتری Pantoea agglomerans برای نخستینبار در جهان بهعنوان عامل ایجادکنندة علائم شانکر زردآلو معرفی شده است. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
کلیدواژهها | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
بیماری شانکر زردآلو؛ Pseudomonas syringae؛ Pantoea agglomerans؛ 16S rRNA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
اصل مقاله | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction Stone fruit trees are often endemic to temperate regions belonging to the family of Rosaceae, a subfamily of Prunoideae and Prunus genus. This large genus includes plum, peach, chile, greengages, cherry, apricot, almond, and many species, some are used as the base or the ornamental plant (1). Apricot or by scientific name Prunus armeniaca L., belongs to the family Rosaceae, subfamily Prunoideae, genus Prunus. Prunus has many species that are economically important for the production of fruit, nuts, wood, and as an ornamental plant for the green space (2). According to the latest FAO statistics in 2014, Iran is the second-largest producer of apricots in the world after Uzbekistan with 432,000 tons. According to FAO statistics in 2017, Iran has 11547 hectares of apricot cultivated area with a production rate of 239712 tons and a yield equivalent to 207597 kg/ha, Hamedan province accounts for 3.9% of this amount. According to the latest FAO statistics in 2020, Turkey is the first apricot producer in the world with 730 thousand tons of apricots, followed by Uzbekistan and Iran with 662 and 306 thousand tons, respectively. (3). Diseases such as stone fruit trees rust (Tranzchelia pruni-spinisa D.), the complexity of peach leaf and plum deformity (Taphrina deformans Tul., T. pruni Tul.), stone fruit shot hole spot (Wilsonomyces carpophilus M.B. Ellis), peach powdery mildew (Sphaerotheca pannosa de Bary), Mummification (Monilinia fructicola Honey, M. fructigena Honey), stone fruit trees cytospora canker (Cytospra leucostoma Höhn), necrotic ring spot (Prunus necrotic ring spot G.P. Martelli), stone fruit trees leaf spot (Xanthomonas arboricola pv pear Vauterin et al. ), and stone fruit bacterial canker ( Pseudomonas syringae pv syringae Van Hall), cause economic losses to the stone fruit trees each year (4). Bacterial species belonging to the Pseudomonas genus are among the most important plant pathogens. These bacteria are distributed worldwide and reduce crop quantity and quality. A few pathovars of P. syringae such as P. s. pv. syringae (Pss) cause canker disease on stone fruits. Hamedan province is one of the important regions for the cultivation of stone fruit trees, such as apricots (Prunus armeniaca), due to its suitable climatic conditions (5). This disease causes a 10 to 20% reduction in yield and sometimes this damage reaches up to 80%, and even 10 to 75 percent of trees are lost in young gardens. Symptoms include cankers with leachate leaking from the branches, twigs, and trunks of the tree. These symptoms also occur in pruning wounds. Infection begins and the disease progresses in late winter and early spring. Leachate or gum is produced in most cankers and seeps out by contaminating the site (5). Cankers that do not produce gum are softer, wetter, and sunken and may have a sour smell. Due to the spread of canker, the upper part of the plant is cut off from the lower parts, and the leaves become twisted and wilted, and then the branch or all the upper parts of the tree may dry out (5). Pseudomonas syringae is a gram-negative bacterium, aerobic, the subtype gamma-proteobacteria, rod-shaped, with one or more polar flagella and with few exceptions producing fluorescent pigments. The main hosts of this pathogenic bacterium are cherry, peach, and apricot trees, as well as almond, pear, citrus, maple, alder, hazelnut, magnolia, lilac, poplar, lily, rose, a number of vegetables, and cereal (6). Materials and MethodsSampling and Isolation: In this study, samples of apricot diseased trees in Hamedan province were collected in early spring and late autumn of 2018. The collected samples included young and infected middle branches of stone fruits trees, which were kept in the refrigerator until culture. To isolate the causal bacteria agents of the disease, samples were washed with tap water followed by sterilized distilled water. Pieces of plant tissues from the border of healthy and infected tissues were separated, chopped in Petri dishes, and put in a few drops of sterilized distilled water for 30 minutes. A loopful of bacterial suspension was a stroke on nutrient agar medium (NA), kept for two to three days at 26-27 °C. The grown single colony was then isolated from the medium and purified on a nutrient agar medium for daily use. For longer-term storage, from freshly cultured bacteria (24 hours), a concentrated suspension was prepared in microtubes containing sterile distilled water and stored in a refrigerator at 4 °C (6).Hypersensitivity reaction (HR): Most plant pathogenic bacteria have the ability to cause hypersensitivity to tobacco or geranium. In this experiment, a relatively opaque suspension of bacteria with an approximate concentration of 108–1011 CFU / ml was prepared and injected by a sterilized insulin syringe between two-leaf epiderma of geranium (6).Extraction of total soluble cell protein from samples: Bacterial strains were cultured on a NA medium for 48 hours, their cell mass was collected by a sterile loop from the surface of the medium and poured into 1.5 ml microtubes. For every loop of bacteria (3 ml3), 1000 µl of protein extraction buffer was added, shake vigorously with a vortex device three times per minute. The microtubes were immersed in boiling water for five minutes and immediately were placed in an ice-water mixture for two minutes. The microtubes were centrifuged at 10,000 rpm for 10 minutes, the upper phase of protein suspension was gently removed and kept in a new microtube and kept in a freezer at -20 °C until using. For comparison of cellular proteins of strains isolated from apricot trees, protein electrophoresis in the presence of sodium dodecyl sulfate (SDS) was performed in the discontinuous Laemmli system (6, 7). Pathogenicity test: Since P. s. pv. syringae (Pss) survival on the plant surface is possible, therefore, the presence of the bacteria with the plant tissues does not prove its pathogenicity and in this case, pathogenicity tests should be performed (8). The pathogenicity test was performed according to Tomidis et al. (2005), by injection of bacterial suspension (103 -105 CFU/ml) prepared from freshly grown culture into young plant tissues. The injected plants were kept in greenhouse conditions (25°C ± 3) and the emergence of canker and longitudinal sunken wounds after 10 to 15 days was considered a positive sign of the pathogenicity test. Three replicates were applied to each strain. They were examined for approximately one month for complete assurance (9). Characterization of the phenotypic properties of the bacterial strains: Identification of purified pathogenic strains was performed according to standard bacteriological methods (6). The gram reaction of bacterial strains was determined by the solubility test in potassium hydroxide 3% (6). Polymerase chain reaction (PCR): In order to extract the DNA from bacterial cells, they were cultured on NA medium for three days, a loop of bacteria was poured into the microtube and 1000 µl of distilled water or TE buffer was added to them and boiled three times in warm water bath for 1.5 minutes and immediately cooled. The microtubes were centrifuged at 13,000 rpm for 10 minutes and a microliter of the upper phase was used for polymerase chain reaction (10). DNA electrophoresis in agarose gel: This method was used to estimate the quantity and quality of extracted DNA and its non-fracture. For this purpose, four microliters of DNA were extracted for each sample, mixed with two microliters of buffer or loading dye, and poured into a 0.8% agarose gel well. The gel was electrophoresed for 1.5 hours at a constant voltage of 80 volts. After staining with ethidium bromide, DNA was observed and photographed under ultraviolet (UV) light in a document gel apparatus. The existence of a high molecular weight band without gel elongation was considered as a criterion for DNA quality (10). Primers: Specific primers prepared from Sinagen Company were used for polymerase chain reaction experiments. The primers were freeze-dried in the tube and diluted with sterile double-distilled water to initial concentrations. The diluted primers were then kept at -20°C until using. The sequences of used primers and PCR conditions are shown in Tables 1 and 2, respectively (10).
Table 1- Primers’ properties and PCR conditions used in this study
The reaction mixture for PCR: Table 2- Preparation of the base solution for specific primers to perform the PCR reaction
ResultsIn this study, a total of 130 strains were isolated from infected diseased apricot samples, collected from Hamedan province. Based on the color, type of colonies on the culture medium (Figure 1), and the electrophorized total soluble protein pattern of the bacterial strains, 65 strains were selected as a representative for further investigation (Table 3).The hypersensitivity reaction was performed on the geranium leaves which 48 to 72 hours about 30 strains showed symptoms of hypersensitivity (Figure 2).Based on the pathogenicity test, two weeks after inoculation, the symptoms of cankers appeared as necrotic spots, which eventually led to the drying of the leaves (Figure 3). Among the 30 representative’s strains, 27 strains were Gram negative and three strains were Gram positive.
Fig. 1- Bacterial colonies isolated from apricot canker on King’s B medium Table 3- Places and names of the bacterial strains obtained from infected apricot trees in Hamedan province
Fig. 2- Hypersensitivity reaction on geranium leaves, a) Negative control, b) Leaves inoculated with pathogenic strains isolated from apricot trees Fig. 3- Pathogenicity of the bacterial strains isolated from apricot seedling. a) Healthy seedlings, b) Infected seedlings by Pseudomonas syringae, c) Infected seedlings by Pantoea agglomerans
.Soluble bacterial cell total protein pattern by SDS-PAGE: A total of 30 representatives strain selected based on their HR on geranium leaves were tested for comparison of their total cell soluble proteins by SDS-PAGE. In some cases, there showed differences and finally they were divided into seven groups (Table 4).
Table 4- Grouping of the bacterial causing apricot canker disease based on their total cell soluble proteins pattern (SAD-PAGE)
.Phenotypic characteristics of the tested bacterial strains: Following performing pathogenicity test, for identification of the strains that induced disease symptoms on apricot seedlings, they were subjected to standard bacteriological tests to characterize their phenotypic features. Results are presented in Table 5.
Table 5- Phenotypic characteristics of pathogenic strains isolated from infected apricot trees
According to the phenotypic characteristics of the tested bacterial strains (Table 5) they were two main groups which first groups including strain FB61 were identified as P. syringae and the second group including strain FB46 were identified as Pantoea agglomerans. It is worthy to note that according to literature this is the first report of isolation of P syringae. from Hamedan province as a causative agent of apricot canker disease and also the presence of Pantoea agglomerans as another agent of this disease worldwide is the first time. Polymerase chain reaction (PCR)16S rRNA encoding gene amplification: Polymerase chain reaction using RD1 and FD1 primers resulted in expected DNA bands in FB46 and FB61 strains (Figure 4). The PCR product of FB46 and FB61 was sent for sequencing to Topazgen Company. Fig. 4- Amplified 16S rRNA encoding gene using PCR from Pseudomonas syringae strains isolated from apricot trees in electrophorized agarose gel 1%. Obtained sequences from two representatives bacterial strains were aligned in the NCBI database by Blast software. Blast results show that strain FB46 has most similarity (95.33%) to Pantoea agglomerans RSG19 and FB61 has the most similarity (98.7%) to Pseudomonas syringae NCPPB281 (Figure 5).
Fig. 5- Phylogenetic tree of strain Pseudomonas syringae strain FB61 based on aligned concatenated sequences of the 16S rRNA, Pseudomonas fluorescens LMG 14562 (HE586392) selected as out group
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مراجع | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(1) Khodaygan P., Sedaghati E., Hoseinipoor A., Baghaee Ravari S. Study on canker disease of stone fruits and antibacterial effects of some plant essentials on its causal agent in Kerman province. Iranian Journal of Plant Pathology 2012; 48(3): 107-110. (2) Westwood M.N. Temperate-zone pomology: physiology and culture. 3rd ed. Portland: Timber Press; 1993. (3) fao.org [Home page on the Internet]. Palazzo FAO, Rome, Italy: Production of stone fruits and apricots in the world, Iran and Hamedan province in recent years [updated 2021 March 3]. Available from: http://www.fao.org/. (4) Ashkan M. Disease of stone fruit trees. Tehran: Tehran University Publishing Center; 2002. (5) Agrios G.N. Plant Pathology. 5th ed. Amsterdam: Elsevier Academic Press; 2005. (6) Schaad N.W., Jones J.B., Chun W. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3th ed. Maryland: APS Press; 2001. (7) Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophageT4. Nature 1970; 227: 680-685. (8) Scortichini M., Morone C. Apoplexy of Peach Tree Caused by Pseudomonas viridiflava. Journal of Phytopathology 1970; 145: 367-399. (9) Thomidis T., Tsipouridis C., Exadaktylou E., Drogoudi P. Comparison of three Laboratory Methods to Evaluate the Pathogenicity and Virulence of ten Pseudomonas syringae pv. syringae Strains on Apple, Pear, Cherry and Peach Trees. Phytopathology 2005; 33: 137– 140. (10) Ausubel F.M., Robert M., Kingston E., Moore D.D., Seidman J.G. Short Prptocols in Molecular Biology. 4th Edition. London: John Wiley publisher; 2014. (11) Vasebi Y., Khakvar R., Faghihi M.M., Vinatzer B.A. Genomic and Pathogenic Properties of Pseudomonas syringae pv. syringae Strains Isolated from Apricot in East Azerbaijan Province, Iran. Biocatalysis and Agricultural Biotechnology 2019; 19: 101-167. (12) Lelliott R.A., Billing E., Hayward A.C. A Determinative Scheme for the Fluorescent Plant Pathogenic Pseudomonads. Journal of Applied Bacteriology, 1996; 29: 470-489. (13) Bultreys A., Kaluzna M. Bacterial Cankers Caused by Pseudomonas syringae on Stone Fruit Species with Special Emphasis on the Pathovars of syringae and morspronorum Race 1 and 2. Journal of Plant Pathology 2010; 92: 21 -33.(14) Hattingh M.J., Roos I.M., Mansvelt E.L. Infection and Systematic Invasion of Deciduous Fruit Trees by Pseudomonas syringaein in South Africa. Plant Diseases 1989; 73: 784-791. (15) Mohammadi M., Ghasemi A. Rahimian H. Phenotypic Characterization of Iranian Strains of Pseudomonas syringae pv. syringae van Hall, the Causal Agent of Bacterial Canker Disease of Stone Fruit Trees. Journal of Agricultural Science and Technology 2001; 3: 51-65. (16) Vicente J.G., Alves J.P., Russe1 K., Robert S.J. Identification and Discrimination of Pseudomonas syringae Isolates from Wild Cherry in England. European Journal of Plant Patholgy 2004; 110: 337-351. (17) IbrahimY. The Occurrence of Apricot Bacterial Canker Disease caused by Pseudomonas syringae pv. syringae in Saudi Arabia and Factors Affecting Disease Development. Journal of Phytopathology and Pest Management 2017; 69-79. (18) Niknejad Kazempour M., Jamie F., Elahinia A. Occurrence of Pseudomonas syringae pv. syringae the causal agent of bacterial canker of stone fruits in Guilan province of Iran. Journal of Applied Horticulture 2008; 10(2): 142-145. (19) Ahmadi S., Harighi B., Abdollahzadeh J. Phylogenetic Relationships of Fluorescent Pseudomonad isolates Associated with Bacterial Canker of Stone Fruit Trees in Kurdistan Province, Iran. European Journal of Plant Pathology 2018; 150(3): 679-689. (20) Bayazidie Sh. Isolation and detection of bacterial agents associated with canker of stone fruit trees in Oshnaviyeh region [Dissertation]. Azerbaijan: Shahid Madani Univ; 2017. (21) Habibi H. Identification of pathogenic bacteria along with stone fruit trees, seeds and walnuts in Alborz province [Dissertation]. Rafsanjan: Valiasr Univ; 2013. (22) Taheri A. Identification and comparison of phenotypic and genotypic factors in ice nucleus-producing bacteria isolated from stone fruit trees in Khorasan Razavi province [Dissertation]. Mashhad: Ferdosi Univ; 2014. (23) Yazdani Fazlabadi R. Identification of bacterial leaf spot agents in some ornamental plants in Isfahan, Markazi and Khuzestan provinces [Dissertation]. Tehran: Tarbiyatmodares Univ; 2012. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آمار تعداد مشاهده مقاله: 645 تعداد دریافت فایل اصل مقاله: 399 |