[1] K. Ball, Isometric embedding in l p -spaces, European J. Combin., 11 (1990) 305–311.
[2] I. Borg, P. J. Groenen and P. Mair, Applied Multidimensional Scaling, Springer Science & Business Media, New
York, 2012.
[3] M. M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906) 1–72.
[4] W. Glunt, T. L. Hayden, S. Hong and J. Wells, An alternating projection algorithm for computing the nearest
Euclidean distance matrix, SIAM J. Matrix Anal. Appl., 11 (1990) 589–600.
[5] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra Appl., 67 (1985) 81–97.
[6] Patrick J. F. Groenen and I. Borg, Past, present, and future of multidimensional scaling, in Visualization and
Verbalization of Data, J. Blasius and M. Greenacre, eds., Chapman and Hall/CRC, London, 2014, 95–117.
[7] W. Holsztysnki, R n as universal metric space, Notices Amer. Math. Soc., 25 (1978) A–367.
[8] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika,
29 (1964) 1–27.
[9] C. K. Li, T. Milligan and M. Trosset, Euclidean and circum-Euclidean distance matrices: characterizations and
linear preservers, Electron. J. Linear Algebra, 20 (2010) 739–752.
[10] J. J. Meulman, The integration of multidimensional scaling and multivariate analysis with optimal transformations,
Psychometrika, 57 (1992) 539–565.
[11] R. Parhizkar, Euclidean Distance Matrices: Properties, Algorithms and Applications, School of Computer and
Communication Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2013.
[12] J. W. Sammon, A nonlinear mapping for data structure analysis, IEEE Trans. Comput., 100 (1969) 401–409.
[13] I. J. Schoenberg, Remarks to Maurice Frechet’s article“Sur La Definition Axiomatique D’Une Classe D’Espace
Distances Vectoriellement Applicable Sur L’Espace De Hilbert”, Ann. of Math., 36 (1935) 724–732.
[14] I. J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding
in Hilbert space, Ann. of Math., 38 (1937) 787–793.
[15] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc., 44 (1938) 522–536.
[16] Y. Takane, F. W. Young and J. De Leeuw, Nonmetric individual differences multidimensional scaling: an alternating
least squares method with optimal scaling features, Psychometrika, 42 (1977) 7–67.
[17] W. S. Torgerson, Multidimensional scaling: I., theory and method, Psychometrika, 17 (1952) 401–419.
[18] B. van Cutsem, Classification and Dissilllilarity Analysis, Springer-Verlag, New York, 1994.
[19] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Ergebnisse, Springer-Verlag, Berlin, 1975.
[20] H. S. Witsenhausen, Minimum dimension embedding of finite metric spaces, J. Combin. Theory Ser. A, 42 (1986)
184-199.
[21] G. Young and A. S. Householder, Discussion of a set of points in terms of their mutual distances, Psychometrika,
3 (1938) 19–22.