تعداد نشریات | 43 |
تعداد شمارهها | 1,677 |
تعداد مقالات | 13,681 |
تعداد مشاهده مقاله | 31,736,141 |
تعداد دریافت فایل اصل مقاله | 12,542,826 |
Rational and quasi-permutation representations of holomorphs of cyclic $p$-groups | ||
International Journal of Group Theory | ||
مقاله 2، دوره 11، شماره 3، آذر 2022، صفحه 151-174 اصل مقاله (552.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2021.128359.1686 | ||
نویسندگان | ||
Soham Swadhin Pradhan1؛ B. Sury* 2 | ||
1School of Mathematics, Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad, 211019, India | ||
2Stat-Math Unit, Indian Statistical Institute, Bangalore Centre, 8-th Mile Mysore Road , Bangalore, 560059, India | ||
چکیده | ||
For a finite group $G$, three of the positive integers governing its representation theory over $\mathbb{C}$ and over $\mathbb{Q}$ are $p(G),q(G),c(G)$. Here, $p(G)$ denotes the {\it minimal degree} of a faithful permutation representation of $G$. Also, $c(G)$ and $q(G)$ are, respectively, the minimal degrees of a faithful representation of $G$ by quasi-permutation matrices over the fields $\mathbb{C}$ and $\mathbb{Q}$. We have $c(G)\leq q(G)\leq p(G)$ and, in general, either inequality may be strict. In this paper, we study the representation theory of the group $G =$ Hol$(C_{p^{n}})$, which is the holomorph of a cyclic group of order $p^n$, $p$ a prime. This group is metacyclic when $p$ is odd and metabelian but not metacyclic when $p=2$ and $n \geq 3$. We explicitly describe the set of all isomorphism types of irreducible representations of $G$ over the field of complex numbers $\mathbb{C}$ as well as the isomorphism types over the field of rational numbers $\mathbb{Q}$. We compute the Wedderburn decomposition of the rational group algebra of $G$. Using the descriptions of the irreducible representations of $G$ over $\mathbb{C}$ and over $\mathbb{Q}$, we show that $c(G) = q(G) = p(G) = p^n$ for any prime $p$. The proofs are often different for the case of $p$ odd and $p=2$. | ||
کلیدواژهها | ||
Holomorph؛ Rational Representations؛ Faithful Representations؛ Quasi-permutation Representations | ||
مراجع | ||
[1] E. Artin, Zur Theorie der hyperkomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg, 5 (1927) 251–260.
[2] H. Behravesh, Quasi-permutation representations of p-groups of class 2, J. London Math. Soc. (2), 55 (1997) 251–260.
[3] H. Behravesh, Quasi-permutation representations of SL(2, q) and PSL(2, q), Glasg. Math. J., 41 (1999) 393–408.
[4] H. Behravesh, The minimal degree of a faithful quasi-permutation representation of an abelian group, Glasgow Math. J., 41 (1997) 41–39. [5] H. Behravesh and G. Ghaffarzadeh, Minimal degree of faithful quasi-permutation representations of p-groups, Algebra Colloq., 18 no. 1 (2011) 843–846.
[6] H. Behravesh, Quasi-permutation representations of Suzuki group, J. Sci. Islam. Repub. Iran., 10 (1999) 53–56.
[7] H. Behravesh and M. H. Jafari, Quasi-permutation representations of alternating and symmetric groups, Acta Math. Sci. Ser. B, 27 (2007) 297–300. [8] H. Behravesh, Quasi-permutation representations of 2-groups of class 2 with cyclic centre, Groups St. Andrews 2001 in Oxford, I (2003) 44–49. [9] I. Schur, Aritlhmetische Untersuchungen über endliche Gruppen linearer Substitutionen, S’Ber. Akad. Wiss., (1906) 164–184. [10] I. Reiner, The Schur index in the theory of group representations, Michigan Mat. J., 8 (1961) 39-47.
[11] I. Martin Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994, corrected reprint of the 1976 original published by Academic Press. [12] J. H. M. Wedderburn, On hypercomple numbers, Proc. London Math. Soc., 6 (1908) 77–117.
[13] Jean-Pierre Serre, Linear representations of finite groups, Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, 42, Springer-Verlag, New York-Heidelberg, 1977. [14] J. L. Alperin and Rowen B. Bell, Groups and representations, Graduate Texts in Mathematics, 162, Springer-Verlag, New York, 1995. [15] J. M. Burns, B. Goldsmith, B. Hartley and R. Sandling, On quasi-permutation representations of finite groups, Glasgow Math. J., 36 (1994) 301–308. [16] M. Ghaffarzadeh, On minimal degrees of faithful quasi-permutation representations of nilpotent groups, Journal of New Researches in Mathematics, 3 (2018) 87–98. [17] M. R. Darafsheh, M. Ghorbany, A. Daneshkhah and H. Behravesh, Quasi-permutation representations of the group GL2 (q), J. Algebra., 243 (2001) 142–167. [18] W. J. Wong, Linear groups analogous to permutation groups, J. Austral. Math. Soc., 3 (1963) 180–184. | ||
آمار تعداد مشاهده مقاله: 956 تعداد دریافت فایل اصل مقاله: 251 |