[1] G. Ahmadi, Stable rough extreme learning machines for the identification of uncertain continuous-time nonlinear systems,
Control and Optimization in Appl. Math. 4 (2019) 83–101.
[2] G. Ahmadi and M. Teshnehlab, Designing and implementation of stable sinusoidal rough-neural identifier, IEEE Trans. Neural
Netw. Learn. Syst., 28 (2017) 1774–1786.
[3] G. Ahmadi and M. Teshnehlab, Identification of multiple input-multiple output non-linear system cement rotary kiln using
stochastic gradient-based rough-neural network, Journal of AI and Data Mining, 8 (2020) 417–425.
[4] G. Ahmadi, M. Teshnehlab and F. Soltanian, A higher order online Lyapunov-based emotional learning for rough-neural iden-tifiers, Control and Optimization in Appl. Math., 3 (2018) 87–108.
[5] R. Ariew, D. Garber and G. W. Leibniz, Philosophical Essays, Hackett Publishing Company, Indianapolis, 1989.
[6] I. Chikalov, V. Lozin, I. Lozina, M. Moshkov, H. S. Nguyen, A. Skowron and B. Zielosko, Three Approaches to Data Analysis
Test Theory, Rough Sets and Logical Analysis of Data, Springer-Verlag, Berlin, 2013.
[7] D. Dubois and H. Prade, Foreword, Rough Sets: Theoretical Aspects of Reasoning About Data, System Theory, Knowledge
Engineering and Problem Solving, 9, Kluwer, Dordrecht, the Netherlands, 1992.
[8] M. M. Gupta, L. Jin and N. Homma, Static and Dynamic Neural Networks from Fundamentals to Advanced Theory, John
Wiley & Sons Inc, Hoboken, NJ, 2003.
[9] Y. F. Hassan, Rough neural networks in adapting cellular automata rule for reducing image noise, International Journal of
Computer, Electrical, Automation, Control and Information Engineering, 8 (2014) 71–74.
[10] W. Heisenberg, Ueber den anschaulichen inhalt der quantentheoretischen kinematik and mechanik, Zeitschrift für Physik, 43
(1927) 172–198.
[11] S. Hirano and S. Tsumoto, Rough representation of a region of interest in medical images, Int. J. Approx. Reason., 40 (2005)
23–34.
[12] H. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian and A. Elkamel, Short-term wind speed forecasting frame-work based on stacked denoising auto-encoders with rough ANN, Sustainable Energy Technologies and Assessments, 38 (2020)
100601.
[13] G. Jeon, Anisetti, E. Damiani and O. Monga, Real-time image processing systems using fuzzy and rough sets techniques, Soft
Computing, 22 (2018) 1381–1384.
[14] R. Keefe, Theories of Vagueness, Cambridge Studies in Philosophy, Cambridge, UK, 2000.
[15] Y. Lin and S. Liu, A historical introduction to grey systems theory, Proc. IEEE Int. Conf. Syst., Man Cybern., The Hague, The
Netherlands, 2004, 2403–2408.
[16] P. J. Lingras, Rough-neural networks, Proc. 6th Int. Conf. IPMU, Granada, 1996, 1445–1450.
[17] H. S. Nguyen and A. Skowron, Rough sets: from rudiments to challenges, Rough Sets and Intelligent Systems – Professor
Zdzisław Pawlak in Memoriam, A. Skowron, Z. Suraj, eds., Springer-Verlag, Berlin, 2013, 75–173.
[18] S. K. Pal and A. Skowron, Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999.
[19] Z. Pawlak and A. Skowron, Rudiments of rough sets, Information Sciences, 177 (2007) 3–27.
[20] Z. Pawlak, Rough Sets, University of Information Technology and Management, Warsaw, Poland, available at http://bcpw.
bg.pw.edu.pl/Content/2026/RoughSetsRep29.pdf, 2019.
[21] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht, Netherlands,
1991.
[22] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982) 341–356.
[23] Z. Pawlak and A. Skowron, Rough membership functions, in Advances in the Dempster-Shafer theory of evidence, R. Yager,
M. Fedrizzi and J. Kacprzyk, eds., John Wiley & Sons, New York, 1994, 251–271.
[24] L. Polkowski, Rough Sets, Rough Mereology and Uncertainty, Thriving Rough Sets, Studies in Computational Intelligence,
708, G. Wang, A. Skowron, Y. Yao, D. Ślęzak and L. Polkowski, eds., Springer International Publishing AG, Cham, Switzer-land, 2017, 49–85.
[25] B. Russell, The Principles of Mathematics, 2nd ed., George Allen & Unwin Ltd., London, Great Britain, 1937.
[26] A. Skowron, Rough sets and vague concepts, Fund. Inform., 64 (2005) 417–431.
[27] A. Skowron and S. Dutta, Rough sets: past, present, and future, Nat. Comput., 17 (2018) 855–876.
[28] A. Skowron and J. F. Peters, Rough-granular computing, Handbook of Granular Computing, W. Pedrycz, A. Skowron, V.
Kreinovich, eds., John Wiley & Sons, USA, 2008, 285–327.
[29] R. Slowinski, S. Greco and B. Matarazzo, Rough sets and decision making, in Encyclopedia of Complexity and Systems
Science, R. Meyers, ed., Springer, Heidelberg, 2009, 7753–7787.
[30] S. Tsumoto, Modelling medical diagnostic rules based on rough sets, Proceeding of International Conference on Rough Sets
and Current Trends in Computing, Warsaw, Poland, 1998 475–482.
[31] S. K. M. Wong and W. Ziarko, A probabilistic model of approximate classification and decision rules with uncertainty in
inductive learning, Technical Report CS-85-23, Department of Computer Science, University of Regina, 1985.
[32] Y. Yao, Three-way decision and granular computing, Int. J. Approx. Reason. 103 (2018) 107–123.
[33] Y. Yao, Rough sets and three-way decisions, International Conference on Rough Sets and Knowledge Technology, LNCS
(LNAI) 9436, D. Ciucci, G. Y. Wang, S. Mitra and W. Z. Wu, eds., Tianjin, China, 2015 62–73.
[34] Y. Yao, An outline of a theory of three-way decisions, RSCTC 2012, LNCS (LNAI) 7413, J. Yao,Y. Yang, R. Slowinski, S.
Greco, H. Li, S. Mitra and L. Polkowski, eds., Springer, Heidelberg, 2012 1–17.
[35] Y. Yao, Three-way decision: An interpretation of rules in rough set theory, RSKT 2009, LNCS (LNAI), 5589, P. Wen, Y. Li,
L. Polkowski, Y. Yao, H. Tsumoto and G. Wang, eds., Springer, Heidelberg, 2009 642–649.
[36] Y. Yao, Probabilistic rough set approximations, International Journal of Approximation Reasoning, 49 (2008) 255–271.
[37] Y. Yao and X. F. Deng, Quantitative rough sets based on subsethood measures, Inform. Sci., 267 (2014) 306–322.
[38] Y. Yao, S. Greco and R. Slowinski, Probabilistic rough sets, Springer Handbook of Computational Intelligence, J. Kacprzyk
and W. Pedrycz, eds., Springer-Verlag, Berlin, Germany, 2015 387–411.
[39] L. A. Zadeh, A new direction in AI: Toward a computational theory of perceptions, AI Magazine, 22 (2001) 73–84.
[40] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338–353.
[41] Q. Zhang, Q. Xie and G. Wang, A survey on rough set theory and its applications, CAAI Trans. Intell. Technol., 1 (2016)
323–333.