[1] R. Baillie, Long memory processes and fractional integration in econometrics, J. Econometrics, 73 (1996) 5–59.
[2] N. Delfan, A. Pishkoo, M. Azhini and M. Darus, Using fractal calculus to express electric potential and electric field in terms of staircase and characteristic functions, Eur. J. Pure Appl. Math., 13 (2020) 19–32.
[3] K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
[4] A. K. Golmankhaneh, About Keplers third law on fractal-time spaces, Ain Shams Eng. J., 9 (2018) 2499–2502.
[5] A. K. Golmankhaneh and D. Baleanu, Diffraction from fractal grating Cantor sets, J. Modern Opt., 63 (2016)
1364–1369.
[6] A. K. Golmankhaneh and D. Baleanu, Heat and Maxwells equations on Cantor cubes, Rom. Rep. Phys., 69 (2017) 1–11.
[7] A. K. Golmankhaneh and D. Baleanu, About Schrödinger equation on fractals curves imbedding in R ۳ , Internat. J. Theoret. Phys., 54 (2015) 1275–122.
[8] A. K. Golmankhaneh and D. Baleanu, Non-local integrals and derivatives on fractal sets with applications, Open Physics. 14 (2016) 542–548.
[9] A. K. Golmankhaneh and D. Baleanu, Fractal calculus involving gauge function, Commun. Nonlinear Sc. Nume. Simul. 37 (2016) 125–130.
[10] A. K. Golmankhaneh and A. S. Balankin, Sub-and super-diffusion on Cantor sets: Beyond the paradox, Phys. Lett. A , 382 (2018) 960–967.
[11] A. K. Golmankhaneh and C. Tunc, On the Lipschitz condition in the fractal calculus, Chaos Solitons Fractals, 95 (2017) 140–147.
[12] A. K. Golmankhaneh and C. Tunc, Sumudu transform in fractal calculus, Appl. Math. Comput. 350 (2019) 386–401.
[13] C. P. Haynes and A. D. Roberts, Generalization of the fractal Einstein law relating conduction and diffusion on networks, Phys. Rev. Lett. 103 (2009) https://doi.org/10.1103/PhysRevLett.103.020601.
[14] F. K. Jafari, M. S. Asgari and A. Pishkoo, Fractal calculus for fractal materials, Fractal Fract. 3 (2019). https://doi.org/10.3390/fractalfract3010008.
[15] K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions,
Chaos, 6 (1996) 505–513.
[16] K. M. Kolwankar and A. D. Gangal, Hölder exponents of irregular signals and local fractional derivatives, Pranama-J. Phys., 48 (1997) 49–68.
[17] K. M. Kolwankar and A. D. Gangal, Local fractional calculus: a calculus for fractal space-time, Fractals: theory and applications in engineering, Springer, London, 1999 171–181.
[18] K. M. Kolwankar and A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80 (1998) 214-217.
[19] B. B. Mandelbrot,The Fractal Geometry of Nature, Freeman and Company, New York, 1977.
[20] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line- II: Conjugacy with ordinary calculus, Fractals, 19 (2011) 271–290.
[21] A. Parvate, Calculus on fractal subsets of real line- I: Formulation, Fractals, 17 (2009) 53–81.
[22] A. Parvate and A. D. Gangal, Fractal diferential equations and fractal-time dynamical systems, Pramana-J. Phys., 64 (2005) 389–409.
[23] R. Pashaei, A. Pishkoo and M. S. Asgari, and D. Ebrahimi Bagh, -Differentiable functions in complex plane, J. Samara State Tech. Univ. Ser. Phys. Math. Sci., 24 (2020) 379–389.
[24] S. Satin, A. Parvate and A. D. Gangal, Fokker–Planck equation on fractal curves, Chaos Solitons Fractals, 52 (2013) 30–35.
[25] S. Satin and A. D. Gangal, Langevin equation on fractal curves, Fractals, 24 (2016) 7 pp.
[26] م. ح. اکرمی، حسابان کسری از نظریه تا کاربرد، ریاضی و جامعه 4 (1396) 56--69.
[27] ز. خاتمی، ی. علیزاده، دیفرانسیل و انتگرال از مرتبه کسری، فرهنگ و اندیشه ریاضی، 29 (1381) 17--30.
[28] م. دلخوش، معرفی فرکتالها و بعدهای کسری، ریاضی و جامعه، 1 (1396) 1--23.