تعداد نشریات | 43 |
تعداد شمارهها | 1,637 |
تعداد مقالات | 13,304 |
تعداد مشاهده مقاله | 29,858,616 |
تعداد دریافت فایل اصل مقاله | 11,940,547 |
Forcing edge detour monophonic number of a graph | ||
Transactions on Combinatorics | ||
مقاله 1، دوره 10، شماره 4، اسفند 2021، صفحه 201-211 اصل مقاله (748.34 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2021.119182.1670 | ||
نویسندگان | ||
P. Titus1؛ K. Ganesamoorthy* 2 | ||
1Department of Mathematics, University College of Engineering Nagercoil, Nagercoil-629 004, India | ||
2Department of Mathematics, Coimbatore Institute of Technology, Coimbatore - 641 014, India | ||
چکیده | ||
For a connected graph $G=(V,E)$ of order at least two, an edge detour monophonic set of $G$ is a set $S$ of vertices such that every edge of $G$ lies on a detour monophonic path joining some pair of vertices in $S$. The edge detour monophonic number of $G$ is the minimum cardinality of its edge detour monophonic sets and is denoted by $edm(G)$. A subset $T$ of $S$ is a forcing edge detour monophonic subset for $S$ if $S$ is the unique edge detour monophonic set of size $edm(G)$ containing $T$. A forcing edge detour monophonic subset for $S$ of minimum cardinality is a minimum forcing edge detour monophonic subset of $S$. The forcing edge detour monophonic number $f_{edm}(S)$ in $G$ is the cardinality of a minimum forcing edge detour monophonic subset of $S$. The forcing edge detour monophonic number of $G$ is $f_{edm}(G)=min\{f_{edm}(S)\}$, where the minimum is taken over all edge detour monophonic sets $S$ of size $edm(G)$ in $G$. We determine bounds for it and find the forcing edge detour monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with $0\leq a<b$ and $b\geq 2$, there exists a connected graph $G$ such that $f_{edm}(G)=a$ and $edm(G)=b$. | ||
کلیدواژهها | ||
edge detour monophonic set؛ edge detour monophonic number؛ forcing edge detour monophonic set؛ forcing edge detour monophonic number | ||
مراجع | ||
[1] F. Harary, Graph Theory, Addison-Wesley, 1969.
[2] P. Titus and K. Ganesamoorthy, On the Detour Monophonic Number of a Graph, Ars Combin., 129 (2016) 33–42.
[3] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The Detour Monophonic Number of a Graph, J. Combin. Math. Combin. Comput., 84 (2013) 179-188. [4] A.vP. Santhakumaran, P. Titus, K. Ganesamoorthy and P. Balakrishnan, Edge Detour Monophonic Number of a Graph, Proyecciones, 32 (2013) 183–198. | ||
آمار تعداد مشاهده مقاله: 360 تعداد دریافت فایل اصل مقاله: 456 |