تعداد نشریات | 43 |
تعداد شمارهها | 1,651 |
تعداد مقالات | 13,405 |
تعداد مشاهده مقاله | 30,239,150 |
تعداد دریافت فایل اصل مقاله | 12,083,802 |
On some projective triply-even binary codes invariant under the Conway group ${\rm Co}_1$ | ||
International Journal of Group Theory | ||
دوره 11، شماره 1، خرداد 2022، صفحه 23-35 اصل مقاله (231.12 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2021.123705.1632 | ||
نویسنده | ||
Bernardo G. Rodrigues* | ||
Department of Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa | ||
چکیده | ||
A binary triply-even $[98280, 25, 47104]_2$ code invariant under the sporadic simple group ${\rm Co}_1$ is constructed by adjoining the all-ones vector to the faithful and absolutely irreducible 24-dimensional code of length 98280. Using the action of ${\rm Co}_1$ on the code we give a description of the nature of the codewords of any non-zero weight relating these to vectors of types 2, 3 and 4, respectively of the Leech lattice. We show that the stabilizer of any non-zero weight codeword in the code is a maximal subgroup of ${\rm Co}_1$. Moreover, we give a partial description of the nature of the codewords of minimum weight of the dual code. | ||
کلیدواژهها | ||
automorphism group؛ modular representation؛ Conway group | ||
مراجع | ||
[1] M. Aschbacher, Sporadic groups, Cambridge Tracts in Mathematics, 104, Cambridge University Press, Cambridge, 1994. [2] E. F. Assmus, Jr and J. D. Key, Designs and their codes. Cambridge Tracts in Mathematics, 103, Cambridge University Press, Cambridge, 1992. [3] K. Betsumiya and A. Munemasa, On triply even binary codes, J. Lond. Math. Soc., 86 (2012) 1–16.
[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997) 235–265. [5] J. H. Conway, A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc., 1 (1969) 79–88.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of finite groups, Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray. Oxford University Press, Eynsham, 1985. [7] D. Heinlein, T. Honold, M. Kermaier, S. Kurz and A. Wassermann, Projective divisible binary codes, In: The Tenth International Workshop on Coding and Cryptography 2017 : WCC Proceedings. Saint-Petersburg, 2017. [8] T. Honold, M. Kermaier, S. Kurz and A. Wassermann, The lengths of projective triply-even binary codes, IEEE Trans. Inform. Theory, 66 (2020) 2713–2716. [9] W. Knapp, Private communication.
[10] B. G. Rodrigues, A projective two-weight code related to the simple group Co1 of Conway, Graphs and Combin., 34 (2018) 509 – 521. [11] R. A. Wilson, The maximal subgroups of Conway’s group Co1 , J. Algebra, 85 (1983) 144–165.
[12] R. A. Wilson, Vector Stabilizers and Subgroups of Leech Lattice Groups, J. Algebra, 127 (1989) 387–408.
[13] R. A. Wilson, The finite simple groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009. | ||
آمار تعداد مشاهده مقاله: 368 تعداد دریافت فایل اصل مقاله: 210 |