تعداد نشریات | 43 |
تعداد شمارهها | 1,637 |
تعداد مقالات | 13,313 |
تعداد مشاهده مقاله | 29,869,479 |
تعداد دریافت فایل اصل مقاله | 11,944,417 |
A note on the automorphism group of the Hamming graph | ||
Transactions on Combinatorics | ||
دوره 10، شماره 2، شهریور 2021، صفحه 129-136 اصل مقاله (426 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2021.127225.1817 | ||
نویسندگان | ||
Seyed Morteza Mirafzal* ؛ Meysam Ziaee | ||
Department of Mathematics, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran | ||
چکیده | ||
Let $m>1$ be an integer and $\Omega$ be an $m$-set. The Hamming graph $H(n,m)$ has $\Omega ^{n}$ as its vertex-set, with two vertices are adjacent if and only if they differ in exactly one coordinate. In this paper, we provide a new proof on the automorphism group of the Hamming graph $H(n,m)$. Although our result is not new (CE Praeger, C Schneider, Permutation groups and Cartesian decompositions, Cambridge University Press, 2018), we believe that our proof is shorter and more elementary than the known proofs for determining the automorphism group of Hamming graph. | ||
کلیدواژهها | ||
automorphism group؛ Hamming graph؛ vertex-transitive graph؛ wreath product | ||
مراجع | ||
[1] N. Biggs, Algebraic Graph Theory, (Second edition), Cambridge Mathematical Library, Cambridge University Press, 1993. [2] R. A. Bailey, P. J. Cameron, C. E. Praeger and C. Schneider, The geometry of diagonal groups, Arxive: 2007.10726v1, (2021). [3] J. A. Bondy and U. S. R. Murty, Graph Theory, New York, Springer, 2008.
[4] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, 18, Springer-Verlag, Berlin, 1989.
[5] P. J. Cameron, Automorphisms of graphs, Topics in Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University Press, 2005. [6] J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, New York, Springer-Verlag, 1996. [7] C. Godsil and G. Royle, Algebraic Graph Theory, New York, Springer-Verlag, 2001.
[8] G. A. Jones, Automorphisms and regular embeddings of merged Johnson graphs, European J. Combin., 26 (2005) 417–435. [9] L. Lu and Q. Huang, Automorphisms and Isomorphisms of Enhanced Hypercubes, Filomat, 34 (2020) 2805–2812. [10] S. M. Mirafzal, On the symmetries of some classes of recursive circulant graphs, Trans. Comb., 3 (2014) 1–6. [11] S. M. Mirafzal, On the automorphism groups of regular hyperstars and folded hyperstars, Ars. Comb., 123 (2015) 75–86. [12] S. M. Mirafzal, Some other algebraic properties of folded hypercubes, Ars. Comb., 124 (2016) 153–159. [13] S. M. Mirafzal, A note on the automorphism groups of Johnson graphs, Ars Combin., 154 (2021) 245–255.
[14] S. M. Mirafzal, More odd graph theory from another point of view, Discrete Math., 341 (2018) 217–220.
[15] S. M. Mirafzal and M. Ziaee, Some algebraic aspects of enhanced Johnson graphs, Acta Math. Univ. Comenianae, 88 (2019) 257–266. [16] S. M. Mirafzal, The automorphism group of the bipartite Kneser graph, Proc. Indian Acad. Sci. Math. Sci., 129 no. 3 (2019) 8 pp. [17] S. M. Mirafzal, Cayley properties of the line graphs induced by consecutive layers of the hypercube, Bull. Malays. Math. Sci. Soc., 44 (2021) no. 3 1309–1326. [18] S. M. Mirafzal, On the automorphism groups of connected bipartite irreducible graphs, Proc. Indian Acad. Sci. Math. Sci., 130 (2020) no. 1 15 pp. [19] S. M. Mirafzal, On the distance-transitivity of the square graph of the hypercube, arXiv: 2101.01615v2 (2021).
[20] C. E. Praeger and C. Schneider, Permutation groups and Cartesian decompositions, Cambridge University Press, 2018. [21] J. X. Zhou, The automorphism group of the alternating group graph, Appl. Math. Lett., 24 (2011) 229–231. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 281 |