تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,334 |
تعداد مشاهده مقاله | 29,924,704 |
تعداد دریافت فایل اصل مقاله | 11,971,321 |
Upper bounds for the reduced second zagreb index of graphs | ||
Transactions on Combinatorics | ||
دوره 10، شماره 3، آذر 2021، صفحه 137-148 اصل مقاله (250.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2020.125478.1774 | ||
نویسندگان | ||
Batmend Horoldagva1؛ Tsend-Ayush Selenge* 2؛ Lkhagva Buyantogtokh1؛ Shiikhar Dorjsembe1 | ||
1Department of Mathematics, Mongolian National University of Education, Baga toiruu-14, Ulaanbaatar, Mongolia | ||
2Department of Mathematics, National University of Mongolia, P.O.Box 187/46A, Ulaanbaatar, Mongolia | ||
چکیده | ||
The graph invariant $RM_2$, known under the name reduced second Zagreb index, is defined as $RM_2(G)=\sum_{uv\in E(G)}(d_G(u)-1)(d_G(v)-1)$, where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$. In this paper, we give a tight upper bound of $RM_2$ for the class of graphs of order $n$ and size $m$ with at least one dominating vertex. Also, we obtain sharp upper bounds on $RM_2$ for all graphs of order $n$ with $k$ dominating vertices and for all graphs of order $n$ with $k$ pendant vertices. Finally, we give a sharp upper bound on $RM_2$ for all $k$-apex trees of order $n$. Moreover, the corresponding extremal graphs are characterized. | ||
کلیدواژهها | ||
Reduced second Zagreb index؛ pendant vertex؛ dominating vertex؛ $k$-apex tree | ||
مراجع | ||
[1] B. M. Ábrego, S. Fernández-Merchant, M. G. Neubauer and W. Watkins, Sum of squares of degrees in a graph, J. Inequal. Pure Appl. Math., 10 (2009) 1–69. [2] R. Ahlswede and G. O. H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Hungar., 32 (1978) 97–120. [3] M. An and L. Xiong, Some results on the difference of the Zagreb indices of a graph, Bull. Aust. Math. Soc., 92 (2015) 177–186. [4] M. Aghel, A. Erfanian and A. R. Ashrafi, On the first and second Zagreb indices of quasi unicyclic graphs, Trans. Comb., 8 (2019) 29–39. [5] A. Behtoei, Some relations and bounds for the general first Zagreb index, MATCH Commun. Math. Comput. Chem., 81 (2019) 361–370. [6] B. Bollobás, P. Erdős and A. Sarkar, Extremal graphs for weights, Discrete Math., 200 (1999) 5–19.
[7] B. Borovicanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb Indices, MATCH Commun. Math. Comput. Chem., 78 (2017) 17–100. [8] L. Buyantogtokh, B. Horoldagva and K. C. Das, On reduced second Zagreb index, J. Combin. Opt., 39 (2020) 776–791. [9] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math., 85 (1998) 245–248.
[10] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math., 285 (2004) 57–66.
[11] K. C. Das and A. Akbar, On a conjecture about the second Zagreb index, Discrete Math. Lett., 2 (2019) 38–43. [12] K. C. Das, I. Gutman and B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices of trees, MATCH Commun. Math. Comput. Chem., 68 (2012) 189–198. [13] B. Furtula, I. Gutman and S. Ediz, On difference of Zagreb indices, Discrete Appl. Math., 178 (2014) 83–88.
[14] F. Gao and K. Xu, On the reduced second Zagreb index of graphs, Rocky Mountain J. Math., 50 (2020) 975–988.
[15] I. Gutman, B. Furtula and C. Elphick, Three new/old vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014) 617–632. [16] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocar- bons, Chem. Phys. Lett., 17 (1971) 535–538. [17] X. He, S. Li and Q. Zhao, Sharp bounds on the reduced second Zagreb index of graphs with given number of cut vertices, Discrete Appl. Math., 271 (2019) 49–63. [18] B. Horoldagva, Relations between the first and second Zagreb indices of graphs, in: Bounds in Chemical Graph Theory-Mainstreams (I. Gutman, B. Furtula, K. C. Das, E. Milovanovic, I. Milovanovic, eds.), Mathematical Chem- istry Monographs, 20 (2017) 69–81. [19] B. Horoldagva, L. Buyantogtokh and S. Dorjsembe, Difference of Zagreb indices and reduced second Zagreb index of cyclic graphs with cut edges, MATCH Commun. Math. Comput. Chem., 78 (2017) 337–350. [20] B. Horoldagva, L. Buyantogtokh, K. C. Das and S.-G. Lee, On general reduced second Zagreb index of graphs, Hacet. J. Math. Stat., 48 (2019) 1046–1056. [21] B. Horoldagva and K. C. Das, Sharp lower bounds for the Zagreb indices of unicyclic graphs, Turk. J. Math., 39 (2015) 595–603. [22] B. Horoldagva and K.C. Das, On Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 85 (2021) 295–301. [23] B. Horoldagva, K. C. Das and T. Selenge, Complete characterization of graphs for direct comparing Zagreb indices, Discrete Appl. Math., 215 (2016) 146–154. [24] S. Ji and S. Wang, On the sharp lower bounds of Zagreb indices of graphs with given number of cut vertices, J. Math. Anal. Appl., 458 (2018) 21–29. [25] A. Martinez-Perez and J.M. Rodriguez, A unified approach to bounds for topological indices on trees and applica- tions, MATCH Commun. Math. Comput. Chem., 82 (2019) 679–698. [26] S. Nikolić, G. Kovačević, A. Milićević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113–124. [27] U. N. Peled, R. Petreschi and A. Sterbini, (n, e)-graphs with maximum sum of squares of degrees, J. Graph Theory, 31 (1999) 283–295. [28] T. Selenge and B. Horoldagva, Maximum Zagreb indices of k-apex trees, Korean J. Math., 23 (2015) 401–408.
[29] T. Selenge, B. Horoldagva and K. C. Das, Direct comparison of the variable Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput., 78 (2017) 351–360. [30] H. Wang and S. Yuan, On the sum of squares of degrees and products of adjacent degrees, Discrete Math., 339 (2016) 1212–1220. [31] K. Xu, K. C. Das and S. Balachandran, Maximizing the Zagreb indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem., 72 (2014) 641–654. [32] Y. Yao, M. Liu, K. C. Das and Y. Ye, Some extremal results for vertex-degree-based invariants, MATCH Commun. Math. Comput. Chem., 81 (2019) 325–344. | ||
آمار تعداد مشاهده مقاله: 495 تعداد دریافت فایل اصل مقاله: 424 |