
تعداد نشریات | 43 |
تعداد شمارهها | 1,706 |
تعداد مقالات | 13,972 |
تعداد مشاهده مقاله | 33,551,763 |
تعداد دریافت فایل اصل مقاله | 13,307,190 |
Symmetric $1$-designs from $PSL_{2}(q),$ for $q$ a power of an odd prime | ||
Transactions on Combinatorics | ||
دوره 10، شماره 1، خرداد 2021، صفحه 43-61 اصل مقاله (300.16 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2020.123692.1740 | ||
نویسندگان | ||
Xavier Mbaale1؛ Bernardo G. Rodrigues* 2 | ||
1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4000 South Africa | ||
2Department of Mathematics and Applied Mathematics University of Pretoria Hatfield 0028 | ||
چکیده | ||
Let $G = PSL_{2}(q)$, where $q$ is a power of an odd prime. Let $M$ be a maximal subgroup of $G$. Define $\left\lbrace \frac{|M|}{|M \cap M^g|}: g \in G \right\rbrace$ to be the set of orbit lengths of the primitive action of $G$ on the conjugates of a maximal subgroup $M$ of $G.$ By using a method described by Key and Moori in the literature, we construct all primitive symmetric $1$-designs that admit $G$ as a permutation group of automorphisms. | ||
کلیدواژهها | ||
1-design؛ symmetric designs؛ primitive design؛ projective special linear group | ||
مراجع | ||
[1] E. F. Assmus, Jr and J. D. Key, Designs and their Codes, Cambridge: Cambridge University Press, 1992. Cambridge Tracts in Mathematics, 103, (Second printing with corrections, (1993). [2] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997) 235–265. [3] P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie, 3-Designs from PSL2 (q), Discrete Math., 306 (2006) 3063–3073. [4] M. R. Darafsheh, Designs from the group PSL2 (q), q even, Des. Codes Cryptogr., 39 (2006) 311–316.
[5] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958.
[6] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag New York Inc., 1996.
[7] T. Fritzsche, The depth of subgroups of PSL2 (q), J. Algebra, 381 (2013) 37–53.
[8] M. Giudici, Maximal subgroups of almost simple groups with socle PSL2 (q), arXiv:math/0703685 [math.GR](2007), http://adsabs.harvard.edu/abs/2007math......3685G. [9] J. D. Key and J. Moori, Designs, codes and graphs from the Janko groups J1 and J2 , J. Combin. Math and Combin. Comput., 40 (2002) 143–159. [10] J. D. Key and J. Moori, Codes, Codes, designs and graphs from the Janko groups J1 and J2 , J. Combin. Math and Combin. Comput., 40 (2002) 143-159. [11] J. D. Key and J. Moori, Designs from maximal subgroups and conjugacy classes of finite simple groups, J. Combin. Math and Combin. Comput., 99 (2016) 41– 60. [12] X. Mbaale and B. G. Rodrigues, Symmetric 1-designs from PGL2 (q), for q an odd prime power, Glasniki Mathe- maticki. To appear. [13] J. Moori, Finite groups, designs and codes. Information security, coding theory and related combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, (2011) 202–230. [14] J. Moori, Designs and Codes from PSL2 (q), Group theory, combinatorics, and computing, Contemp. Math., Amer. Math. Soc., Providence, RI,611 137–149 (2014). [15] J. Moori and A. Saeidi, Some designs invariant under the Suzuki groups, Util. Math., 109 (2018) 105–114.
[16] J. Moori and A. Saeidi, Constructing some designs invariant under P SL2 (q), q even, Commun. Algebra, 46 (2018) 160–166. [17] M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
[18] R. A. Wilson, The finite simple groups, London: Springer-Verlag London Ltd., Graduate Texts in Mathematics, 251 2009. | ||
آمار تعداد مشاهده مقاله: 294 تعداد دریافت فایل اصل مقاله: 343 |