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Abstract. There are many different graphs one can associate to a group. Some examples are the well-

known Cayley graph, the zero divisor graph (of a ring), the power graph, and the recently introduced

coprime graph of a group. The coprime graph of a group G, denoted ΓG, is the graph whose vertices

are the group elements with g adjacent to h if and only if (o(g), o(h)) = 1. In this paper we calculate

the independence number of the coprime graph of the dihedral groups. Additionally, we characterize

the groups whose coprime graph is perfect.

1. Introduction

One of the most beautiful things about mathematics is the interconnected nature of the discipline.

In this paper we will explore a problem involving two different areas of mathematics, namely group

theory and graph theory. Group theory has been around since the 1800’s and, as such, finite groups

have been studied extensively. Graph theory, a branch of discrete mathematics, has been around

for a similar amount of time, however it wasn’t formalized until the 1900’s. Toward the end of the

1800’s, Arthur Cayley connected graph theory and group theory by introducing the Cayley graph of

a group. These graphs encode algebraic information about a group. More precisely, for a group G

and a set S ⊆ G, one has the group elements as a vertex set for the Cayley graph and two vertices

a, b are adjacent if b = as for some s ∈ S. Observe that the chosen set S determines the Cayley graph

and so it is possible to learn information about the group by choosing S wisely. For instance, the

Cayley graph will be connected if and only if S is a generating set for the group G. Since this graph
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is interesting and gives a great deal of information about the group, it has been heavily studied and

many results are known (see [4]).

While Cayley graphs are by far the most well-known graph associated with an algebraic structure,

there are others. One such graph is the zero divisor graph of a ring. For a ring R the zero divisor

graph has ring elements as vertices and two elements a, b are adjacent if and only if ab = 0. This is

another generally well-known and well-studied graph. See [1] for a survey of these graphs.

While there are other notions of graphs associated to groups a recent example is the coprime graph

of a group. The coprime graph of a group was introduced in [8] in 2014 and, as such, it is a relatively

new area of study. For a finite group G, the coprime graph of a group G has the group elements as a

vertex set and two vertices a, b are adjacent if and only if their orders in the group are relatively prime,

(i.e. (o(a), o(b)) = 1). In this paper we will explore some graph parameters for the coprime graphs of

different classes of finite groups and will determine which groups have perfect coprime graphs.

As one would expect, studying the coprime graph of a group requires knowledge of group theory,

graph theory, and a bit of elementary number theory. To ensure the reader has the necessary back-

ground we will review a few definitions and facts regarding both graph theory and group theory that

we plan to use throughout the paper in the following section. Following the background information

we have a short section introducing the coprime graph of a group followed by our results. Our results

are given in two different sections. The first gives the independence number of the coprime graph

for the dihedral groups. The second gives a characterization for which groups have perfect coprime

graphs. We close with some avenues for future research.

2. Background Information

2.1. Graph Theory. We will begin by recalling some basic graph theory. Here we will be studying

only simple graphs. A simple graph G is a graph that has no multiple edges and no loops. A graph H

is a subgraph of a graph G, denoted H ≤ G, if and only if VH ⊆ VG and EH ⊆ EG where VG and EG

represent the vertices and edges of G respectively. A subgraph H of G is called an induced subgraph

if VH ⊆ VG and for all u, v ∈ VH if {u, v} ∈ EG then {u, v} ∈ EH . The complement of a graph G,

denoted G, is defined as the graph with VG = VG and {u, v} ∈ EG if and only if {u, v} ̸∈ EG. Graphs

G and H are isomorphic, denoted G ∼= H, if and only if there exists a bijective function f : VG → VH

such that {u, v} ∈ EG if and only if {f(u), f(v)} ∈ EH . For an in-depth discussion of graph theory

see [2].

In the study of graph theory, there are some commonly appearing graphs. One such family of graph

is the complete graph on n vertices, denoted Kn which has vertex set V and edge set E =
(
V
2

)
. This

means that the graph contains every possible edge. Another common graph family is the cycle on n

vertices, denoted Cn. A cycle on n vertices is a connected graph that has the property |VG| = |EG|
and d(v) = 2 for all vertices v. A bipartite graph is a graph whose vertices can be partitioned into two

sets V1 and V2 such that for all u, v ∈ Vi, we have {u, v} ̸∈ EG. A useful characterization for bipartite

graphs is the following.
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Proposition 2.1. A graph is bipartite if and only if it has no odd cycle as a subgraph.

A complete bipartite graph is a bipartite graph in which all vertices of V1 are adjacent to all vertices

of V2. A tree is a connected graph that has no cycles as a subgraph. By this definition, it is clear that

all trees are bipartite graphs. A graph is called a star on n vertices if there is one vertex with degree

n− 1 and every other vertex has degree 1.

In addition to the different families of graphs, there are also several graph parameters we will

consider. A coloring of a graph is a function c : V → S, where V is the vertex set of the graph. A

coloring is called a proper coloring if and only if for all {u, v} ∈ E, c(u) ̸= c(v). The chromatic number

of a graph, denoted χ(G), is the smallest number of colors needed to properly color the graph. In

complete graphs, since every vertex shares an edge with every other vertex, we have χ(Kn) = n. It

is also useful to notice that if H ≤ G, we have χ(H) ≤ χ(G) because if G can be colored properly

with χ(G) colors and H ≤ G, then any proper coloring of G is certainly a proper coloring of H. The

clique number of a graph G, denoted ω(G), is the number of vertices in the largest complete subgraph

of G. An independent set is a set of vertices that give an empty induced subgraph.The independence

number of a graph, denoted α(G), is size of the largest independent set. Since the complement of a

graph has edges where the original doesn’t, and vice-versa, we have ω(G) = α(G) and ω(G) = α(G)

for all graphs G. Also, since the clique number is the largest complete subgraph, and the chromatic

number of a complete graph is the number of vertices in it, it follows that χ(G) ≥ ω(G). These facts

will be useful going forward.

Lastly, we will define a type of graph that will be of particular interest in our own work below.

Definition 2.2. If for every induced subgraph H of a graph G we have ω(H) = χ(H), then G is called

a perfect graph.

Checking all induced subgraphs of a graph is a rather tedious and difficult task. In 1961 Berge

conjectured a characterization of perfect graphs which was proved in 2006 by Chudnovksy, Robertson,

Seymour, and Thomas in [3].

Theorem 2.3 (Strong Perfect Graph Theorem). A graph is perfect if and only if neither the graph

nor its complement contain Cn as an induced subgraph, where n is odd and n ≥ 5.

We should also note that G having no induced Codd is equivalent to G having no Codd. This fact

will be useful in some of our proofs later.

2.2. Group Theory. In this section we review a few definitions and facts from group theory that will

be relevant to our work. For an in-depth discussion of group theory see [7]. First recall that the order

of a group is the number of elements in the group and is denoted |G|. We will be considering only

finite groups in this paper. The order of an element a, denoted o(a), is the smallest natural number

m such that am = e. If no such integer exists, we say that a has infinite order. If G is an abelian

group with elements a and b, then o(ab) = lcm(o(a), o(b)). These facts about orders of elements will
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be important as we move into finding the coprime graphs of groups. In addition to this, the following

two theorems will be used multiple times throughout our work.

Theorem 2.4 (Lagrange’s Theorem). For any finite group G and subgroup H, the order of H divides

the order of G.

We should note that Lagrange’s Theorem implies that the order of any element of a group must

also divide the order of the group. This is because for all a ∈ G, H = ⟨a⟩ := {an | n ∈ Z} always

forms a subgroup of G and o(a) = |⟨a⟩|.

Theorem 2.5 (Cauchy’s Theorem). If p divides |G| and p is prime, then there exists an element

a ∈ G such that o(a) = p.

Just as there are classes of graphs there are also classes of groups. In this paper we look at

parameters of the coprime graph of cyclic groups, dihedral groups, and the alternating and symmetric

groups.

3. The Coprime Graph of a Group

Now that we have the necessary background we can begin work on our primary object of study,

the coprime graph of a group. We will start by restating the definition of the coprime graph of a

group. We will then look at some examples and state some known results before moving on to our

own contributions.

Definition 3.1. The coprime graph of a group G, denoted ΓG, is the graph with V (G) = G and

{a, b} ∈ E(G) if and only if (o(a), o(b)) = 1.

One thing that follows immediately from the definition is that the coprime graph of any group is

connected. This is because every group has an identity element e and o(e) = 1. As such, the identity

will be adjacent to all other vertices in the coprime graph of the group. Let’s look at a couple of

examples.

Example 3.2. The coprime graph of the groups Z6 and D3:

..

0

.

1

.

5

.

2

.4 . 3.

ΓZ6

..

e

.

x

.

x2y

.

x2

.xy . y.

ΓD3

Notice that while |D3| = |Z6| the graphs above are clearly not isomorphic. This makes sense because

these two groups are vastly different. However, what is interesting is the fact that both graphs above
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have the same chromatic and clique number. In fact, any two groups of the same order will have the

same chromatic and clique number. We state this theorem below. We should note that the result for

chromatic number was stated in [8] and shortly followed by the full proof in [5].

Theorem 3.3. If |G| = pe11 pe22 ...penn where pi is prime for 1 ≤ i ≤ n, then ω(ΓG) = n+ 1 = χ(ΓG).

Since the chromatic and clique number of the coprime graph are known for any group we began our

work on the next natural graph parameter, the independence number.

4. Independence Number of Coprime Graphs

Recall that the independence number of a graph Γ, denoted α(Γ), is the size of the largest inde-

pendent set. In other words α(Γ) is the size of the largest induced empty subgraph of Γ. While the

chromatic and clique numbers depend only on the order of the group G, the independence number

depends on the group structure as well. In particular, the arguments we use below rely on finding the

number of elements of certain orders. As such, it is not clear if a broad approach can be used for a

general group. The independence number for cyclic groups is known and can be found in [6] and [10].

Here we calculate the independence number for the dihedral groups.

Theorem 4.1. Let G = Dn with n = 2lm, where m is odd and l is an integer. Then α(ΓG) = 2n−m.

Proof. Let G = Dn with n = 2lm, where is m is odd and l is an integer. Let V2 consist of all

elements of even order. Since the order of every element in V2 is even, the gcd of any two orders

is at least 2. Therefore V2 is an independent set. Let’s count the size of V2. First recall that

Dn = {e, x, x2, . . . , xn−1, y, xy, . . . , xn−1y} and xiy is a reflection for all i. Hence o(xiy) = 2 for all

0 ≤ i ≤ n − 1. Now notice that ⟨x⟩ = {e, x, . . . , xn−1} ∼= Zn. As such we can count the number of

elements of even order in Zn where n = 2lm with m odd. Recall that the order of any element a ∈ Zn

is given by o(a) = n
gcd(n,a) . It follows that an element a in Zn can have odd order if and only if a is a

multiple of 2l. Hence there are precisely m elements of odd order giving n−m elements of even order.

Thus |V2| = n+ n−m = 2n−m.

Now let I be an independent set in ΓG such that I contains an element of odd order. Notice that

xay ̸∈ I since each such element has order 2. Also, e ̸∈ I since o(e) = 1. Therefore, |I| ≤ n − 1 <

n ≤ 2n−m because m ≤ n. This implies that an independent set of maximum size must only contain

elements of even order. Since V2 consists of all elements of even order it is the unique maximum

independent set. Therefore α(ΓDn) = 2n−m. □

5. Perfect Coprime Graphs

Recall that a graph is perfect when all of its induced subgraphs have equal chromatic and clique

numbers. Notice that if G is a p-group with order pa, then by Lagrange’s Theorem, the order of every

element of the group must divide pa. Therefore the order of any two non-identity elements of G share

a common factor of p. So the only edges that appear in ΓG are ones containing the identity. Since
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the identity is adjacent to every other element, we see that the graph of a p-group will always be a

star, and hence perfect. In this section we give a partial classification of groups that have perfect

coprime graph. Specifically, we give a complete classification for all abelian groups, all symmetric and

alternating groups, and all dihedral groups.

Theorem 5.1. If G is group whose order has at most four distinct prime factors, then ΓG is perfect.

Proof. Suppose that G is a group such that |G| = paqbrcsd where p, q, r, s are primes. Note that we

may assume a, b ≥ 1 and c, d ≥ 0 because if b = c = d = 0, then ΓG is a star and hence perfect.

Now let’s consider possible types of elements in G. By Lagrange’s Theorem, we know that the set of

prime divisors for the order of any element in G is contained in P = {p, q, r, s}. For each g ∈ G, let

Pg = {x ∈ P : x | o(g)}. By the Strong Perfect Graph Theorem, we know that ΓG is perfect if and

only if it does not contain an induced C2k+3 or C2k+3 with k ≥ 1. Here, and for the duration of the

argument, we assume k ≥ 1. Let’s first consider which types of vertices could be taken to give such

induced subgraphs. Suppose that g is an element such that |Pg| = 1. Without loss of generality, say

Pg = {p}. Notice that this vertex cannot be in an induced cycle of odd length of at least five. If it

were, we would have at least two vertices that are not adjacent to g but are adjacent to each other.

However, if two vertices are not adjacent to g this means that they share a common factor of p and

as such cannot be adjacent to each other. Similarly, in the complement of an odd cycle of length 5

or more we must have two vertices that are not adjacent to g but are adjacent to each other, which

cannot happen. See the figure below.

..

g

.

h

.

h′

.

If p | o(g), then p | o(h) and p | o(h′)

.

For C5:

..

g

.

h

.

h′

.

If p | o(g), then p | o(h) and p | o(h′)

.

For C7:

Therefore, if there exists an induced C2k+3 or C2k+3 in ΓG, every vertex g in the induced subgraph

must satisfy |Pg| ≥ 2. Observe that this means |Pg| is exactly two for each such g because if {g, h} is

an edge in ΓG then Ph∩Pg = ∅. However, since each |Pg| ≥ 2, by the pigeonhole principle, this is only

possible if |Pg| = 2 and |Ph| = 2. Lastly, consider the induced subgraph of ΓG on the elements g ∈G
with |Pg| = 2. Suppose first that d = 0. Note that by the pigeonhole principle any pair of subsets of

size two from {p, q, r} will share an element. Hence taking all the vertices in G whose order is divisible

by exactly two primes yields an independent set (and so neither C2k+3 nor C2k+3 can be an induced

subgraph of ΓG). Now suppose d > 0 and again take the induced subgraph of ΓG on the elements

whose order has two prime divisors. This gives a bipartite graph as can be seen in the diagram below.
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..

pq

.

pr

.

ps

.

rs

.

qs

.

qr

Each oval represents the set of elements within G whose order is divisible by exactly two primes.

Note that each pod is an independent set and each pod forms a complete bipartite graph with exactly

one other such pod. Hence, by Proposition 2.1 there can be no odd cycles as subgraphs and thus no

odd cycles as induced subgraphs. To see that C2k+3 cannot appear as an induced subgraph note two

things. First C5
∼= C5. Now notice that for any C2k+3 for k ≥ 2, we have K3 ≤ C2k+3. Thus in both

cases the previous argument applies. □

We move now to groups with at least five distinct prime divisors.

Theorem 5.2. Suppose that G is a group with order n. Suppose n at least five distinct prime divisors

and let P = {primes p : p | n}. For k ≥ 1 let A1, A2, . . . , A2k+3 ⊆ P and set Vi = {g ∈ G : o(g) is the

product of the primes in Ai}. Consider the following two conditions:

(1) Ai ∩Aj = ∅ iff i− j ≡ ±1 mod n

(2) Ai ∩Aj ̸= ∅ iff i− j ≡ ±1 mod n

Then ΓG is not perfect if and only if Vi ̸= ∅ for all i and condition 1 or 2 holds.

Proof. Let G be a group of order n. Suppose that n has at least five prime divisors and let P,Ai,

and Vi be as described above. First suppose that Vi ̸= ∅ for all i and condition 1 holds. It follows

that there exists group elements gi ∈ Vi such that (o(gi), o(gj)) = 1 iff i− j ≡ ±1 mod n. Hence the

following will be an induced subgraph of ΓG.

..

g1

.
g2k+3

.
g2

.

g3

.

g4

Since k ≥ 1 this gives an induced odd cycle of length at least 5. Hence ΓG is not perfect by the

Strong Perfect Graph Theorem. Similarly condition 2 implies that ΓG has an induced subgraph of

C2k+3.

Now suppose that ΓG is not perfect. By the Strong Perfect Graph Theorem we know that ΓG must

have C2k+3 or C2k+3 as an induced subgraph and k ≥ 1. If ΓG has C2k+3 as an induced subgraph this
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implies the existence of group elements g1, g2, . . . , g2k+3 such that (o(gi), o(gj)) = 1 iff i− j ≡ ±1 mod

n. This is precisely having each Vi non-empty and condition 1. Similarly, the existence of C2k+3 as

an induced subgraph gives rise to condition 2. □

Corollary 5.3. Let G be an abelian group. Then ΓG is perfect if and only if the order of G has at

most four prime factors.

Proof. Let G be an abelian group. By Theorem 5.1 if |G| has at most four prime factors, then ΓG

is perfect. So now suppose the order of G has at least five prime factors, say p, q, r, s, and t. By

Cauchy’s Theorem we know that there exist elements a, b ∈ G such that o(a) = p and o(b) = q. Since

G is abelian we have o(ab) = lcm(o(a), o(b)) = pq. By similar reasoning, we can show that elements

with order st, rt, pr, and qs also exist in G. Therefore ΓG is not perfect by Theorem 5.2. □

Next we examine the coprime graph of the symmetric, alternating, and dihedral groups to determine

when they are perfect. To do this we utilize the following fact about perfect graphs. Let Γ be a graph

with H an induced subgraph of Γ. If Γ is perfect, then H is perfect. Similarly, if Γ has any induced

subgraph H such that H is not perfect, then Γ is not perfect. This is easy to see since H being an

induced subgraph of Γ implies any induced subgraph of H is also an induced subgraph of Γ. We now

state an observation that will be used to prove the complete classification for symmertric, alternating,

and dihedral groups.

Recall from above that P = {primes p : p | n} and for g ∈ G, Pg = {p ∈ P | p | o(g)}.

Observation 5.4. If H is an induced subgraph of ΓG and if there exists h ∈ H and a prime p such

that

(1) p ∈ Ph,

(2) for all h′ ∈ H \ {h}, p ̸∈ Ph′,

(3) there exists g ∈ G such that o(g) = 1
po(h),

then (H \ {h}) ∪ {g} ∼= H.

This observation states that if a prime p appears in Ph for exactly one element h we can remove h,

replace it with a group element of order 1
po(h), and have an isomorphic copy of the graph we started

with. This is because removing a factor of p from the order of h will not affect the common factors,

and hence adjacency, it shares with other vertices in H.

Theorem 5.5. Let G be the symmetric group, Sn. Then ΓG is perfect if and only if n ≤ 13.

Proof. Let G = S13 and suppose that ΓG has an induced subgraph H with H ∼= C2k+3 or H ∼= C2k+3,

k ≥ 1. Recall from the proof of Theorem 5.1, that if g ∈ V (H), we must have |Pg| ≥ 2. For primes

p, the only elements in Sp whose order is divisible by p are p-cycles, i.e. elements of exactly order p.

It follows that for any g ∈ V (H), 13 ̸∈ Pg. Now let’s consider elements whose order is divisible by

11. In S13, the only elements whose order is divisible by 11 are 11-cycles and disjoint products of a

transposition with an 11-cycle. Hence the only elements whose order is divisible by 11 are elements of
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order 11 and 22. We know that elements of order 11 can not appear in H so the only elements that

can appear are those of order 22. However, notice that no two elements in H can have the same order

because no two vertices have the same neighborhood. It follows that there can be only one element,

h ∈ V (H) such that 11 ∈ Ph and o(h) = 22. But now by Observation 5.4, we know that any induced

subgraph containing h must be isomorphic to an induced subgraph with vertex g in place of h with

o(g) = 2. But then |Pg| = 1, a contradiction. It follows that there can be no vertices in H whose order

is divisible by 11. But now the prime factors of any vertex in H must come from P = {2, 3, 5, 7}, a
set containing only four primes. As seen in the proof of Theorem 5.1, this can not happen. Hence the

coprime graph of S13 is perfect. Since Sm is an induced subgraph of Sn for m ≤ n, this shows that

ΓSn is perfect for n ≤ 13. Now let n ≥ 14. It follows that Sn contains the following elements:

α1 = (1, 2)(3, 4, . . . , 13) α2 = (1, 2 · · · , 5)(6, 7, . . . , 12) α3 = (1, 2, 3)(4, 5, . . . , 14)

α4 = (1, 2)(3, 4, . . . , 9) α5 = (1, 2, 3)(4, 5, 6, 7, 8)

Recall that cycles of length k have order k and that the order of a product of disjoint cycles is the

least common multiple of their orders. Hence o(α1) = 2 · 11, o(α2) = 5 · 7, o(α3) = 3 · 11, o(α4) = 2 · 7,
and o(α5) = 3 · 5. Therefore the coprime graph is not perfect by Theorem 5.2. □

Corollary 5.6. Let G be the alternating group, An. Then ΓG is perfect if and only if n ≤ 14.

Proof. First notice that ΓAn is an induced subgraph of ΓSn for all n. It follows from Theorem 5.5 that

ΓAn is perfect if n ≤ 13. Now consider A14 and suppose that H is an induced subgraph of A14 with

H ∼= C2k+3 or H ∼= C2k+3, k ≥ 1. Note that the only elements in A14 divisible by 13 are 13-cycles,

which can not appear in H. Recall that a permutation is in An if it can be written as a product of

an even number of transpositions. For a cycle this implies that the length must be odd. Hence for

a permutation written as a product of disjoint cycles to be in An it must contain an even number

of even length cycles or any number of odd cycles. There are elements in S14 whose order is 22 but

these are disjoint products of a transposition and an 11-cycle which do not appear in A14. So the only

elements in A14 whose order is divisible by 11 are 11-cycles and disjoint products of a 3-cycle and an

11-cycle. As in the proof of Theorem 5.5 since no two elements in H can have the same order we can

only have one element whose order is divisible by 11 and this element has order 33. By Observation

5.4 this implies that there can be no vertex in H whose order is divisible by 11. But then we are down

to a set of only four available primes, namely P = {2, 3, 5, 7}, as in the proof of Theorem 5.5. Again

by the proof of Theorem 5.1, the coprime graph of A14 is perfect.

Let n ≥ 15. Consider the following elements:

α1 = (1, 2)(3, 4)(5, 6, . . . , 15) α2 = (1, 2, 3)(4, 5, . . . , 8) α3 = (1, 2)(3, 4)(5, 6, . . . , 11)

α4 = (1, 2, 3)(4, 5, . . . , 14) α5 = (1, 2, . . . , 5)(6, 7, . . . , 12)

Notice that αi ∈ An for all i. Furthermore, o(α1) = 2 · 11, o(α2) = 3 · 5, o(α3) = 2 · 7, o(α4) = 3 · 11,
and o(α5) = 5 · 7. Therefore ΓAn is not perfect by Theorem 5.2. □

Theorem 5.7. The coprime graph of Dn is perfect if and only if n has at most four prime factors.
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Proof. Let G = Dn where n has 5 or more distinct prime divisors. Consider the induced subgraph of

ΓG with vertices from ⟨x⟩; call it H. The graph H is isomorphic to ΓZn , since ⟨x⟩ ∼= Zn as groups.

Using Corollary 5.3, we have that H is not perfect and since H is an induced subgraph of ΓG, ΓG is

also not perfect. Now suppose that n has at most 4 prime factors. If 2 | n then |Dn| has at most

four prime factors and ΓDn is perfect by Theorem 5.1. Suppose 2 ∤ n. Then ΓDn is the join of an

independent set of size n (consisting of the n reflections of order 2) and an isomorphic copy of ΓZn .

But since n has at most 4 prime factors we know that ΓZn is perfect by Theorem 5.1. Hence ΓDn

must also be perfect. □

6. Future Work

In the 1870’s, Leopold Kronecker proved the structure theorem for finite abelian groups. This

theorem states that any finite abelian group is isomorphic to a direct product of cyclic groups, Zn,

with n = pa for some prime p. This motivates us to investigate the coprime graph of a direct product

of groups. For two groups G and H, we would like to see if there is a relationship between ΓG×H and

the pair of graphs ΓG, ΓH . Namely is there a graph product ∗ such that ΓG×H
∼= ΓG ∗ΓH? This could

give a different approach to finding graph parameters for coprime graphs of groups for finite abelian

groups.

Additionally, we would like to explore relationships between parameters of the coprime graph of a

group and the order divisor graph of a group. The order divisor graph of a group was introduced in [9]

and is the graph with vertices given by group elements and two vertices a, b are adjacent if and only

if o(a) | o(b) (or vice versa). While this graph is not the complement of the coprime graph it is very

clearly related to the complement. As such it would be interesting to find and explore relationships

between parameters for both graphs.
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