تعداد نشریات | 43 |
تعداد شمارهها | 1,639 |
تعداد مقالات | 13,330 |
تعداد مشاهده مقاله | 29,903,330 |
تعداد دریافت فایل اصل مقاله | 11,959,777 |
On a relation between Szeged and Wiener indices of bipartite graphs | ||
Transactions on Combinatorics | ||
مقاله 6، دوره 1، شماره 4، اسفند 2012، صفحه 43-49 اصل مقاله (312.43 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2012.2450 | ||
نویسندگان | ||
Lilly Chen1؛ Xueliang Li* 2؛ Mengmeng Liu1؛ Ivan Gutman3 | ||
1Nankai University, Center for Combinatorics | ||
2Nankai University | ||
3University of Kragujevac Kragujevac, Serbia | ||
چکیده | ||
Hansen et. al., using the AutoGraphiX software package, conjectured that the Szeged index $Sz(G)$ and the Wiener index $W(G)$ of a connected bipartite graph $G$ with $n \geq 4$ vertices and $m \geq n$ edges, obeys the relation $Sz(G)-W(G) \geq 4n-8$. Moreover, this bound would be the best possible. This paper offers a proof to this conjecture. | ||
کلیدواژهها | ||
distance (in graph)؛ Szeged index؛ Wiener index | ||
مراجع | ||
M. Aouchiche and P. Hansen (2010) On a conjecture about
the Szeged index European J. Combin. 31, 1662-1666
M. Arezoomand and B. Taeri (2010) Applications of
generalized hierarchical product of graphs in computing
the Szeged index of chemical graphs MATCH Commun. Math.
Comput. Chem. 64, 591-602
J. A. Bondy and U. S. R. Murty (2008) Graph Theory Springer, Berlin
A. Dobrynin, R. Entringer and I. Gutman (2001) Wiener
index of trees: theory and applications Acta Appl.
Math. 66, 211-249
A. Dolati, I. Motevalian and A. Ehyaee (2010) Szeged
index, edge Szeged index, and semi--star trees Discrete Appl. Math. 158, 876-881
R. C. Entringer (1997) Distance in graphs: Trees J. Combin. Math. Combin. Comput. 24, 65-84
I. Gutman (1994) A formula for the Wiener number of
trees and its extension to graphs containing cycles Graph Theory Notes N. Y. 27, 9-15
I. Gutman and A. A. Dobrynin (1998) The Szeged index --
a success story Graph Theory Notes N. Y. 34, 37-44
I. Gutman and B. Furtula (Eds.) (2012) Distance in Molecular Graphs -- Theory Univ. Kragujevac, Kragujevac
I. Gutman and B. Furtula (Eds.) (2012) Distance in
Molecular Graphs -- Applications\/ Univ. Kragujevac,
Kragujevac
I. Gutman and O. E. Polansky (1986) Mathematical Concepts
in Organic Chemistry Springer, Berlin
P. Hansen (2010) Computers and conjectures in chemical
graph theory Plenanry talk at the International Conference
on Mathematical Chemistry, August 4-7, Xiamen, China
H. Hua and S. Zhang (2011) A unified approach to extremal
trees with respect to geometric--arithmetic, Szeged,
and edge Szeged indices MATCH Commun. Math. Comput.
Chem. 65, 691-704
A. Ili\'c (2010) Note on PI and Szeged indices Math. Comput. Modelling 52, 1570-1576
X. Li, X. Yang, G. Wang and R. Hu (2012) The vertex PI and
Szeged indices of chain graphs MATCH Commun. Math.
Comput. Chem. 68, 349-356
M. J. Nadjafi--Arani, H. Khodashenas and A. R.
Ashrafi (2011) On the differences between Szeged and Wiener
indices of graphs Discrete Math. 311, 2233-2237
M. J. Nadjafi--Arani, H. Khodashenas and A. R.
Ashrafi (2012) Graphs whose Szeged and Wiener numbers differ
by 4 and 5 Math. Comput. Modelling 55, 1644-1648
T. Pisanski and M. Randi\'c (2010) Use of the Szeged index and
the revised Szeged index for meauring network bipartivity Discrete Appl. Math. 158, 1936-1944
S. Simi\'c, I. Gutman and V. Balti\'c (2000) Some
graphs with extremal Szeged index Math. Slovaca 50, 1-15
H. Wiener (1947) Structural determination of paraffin boiling
points J. Am. Chem. Soc. 69, 17-20
B. Zhou, X. Cai and Z. Du (2010) On Szeged indices of
unicyclic graphs MATCH Commun. Math. Comput. Chem. 63, 113-132
| ||
آمار تعداد مشاهده مقاله: 5,355 تعداد دریافت فایل اصل مقاله: 3,506 |