س. شهشهانی، حساب دیفرانسیل و انتگرال، 1، ویراست دوم، انتشارات فاطمی، (1388).
[2] K. V. Fritz, The discovery of incommensurability by Hippasus of Metapontum, Ann. of Math., Second Series, 46
(1945) 242–264.
[3] Aristotle (Translator : R. Smith), Prior Analytics, Hackett Publishing Company, (1989).
[4] B. L. Van Der Waerden, Science Awakening I, Springer Netherlands, (1975).
[5] T. M. Apostol, Irrationality of the square root of two - a geometric proof, Amer. Math. Monthly, 107 (2000) 841–
842.
[6] O. Neugebauer, The Exact Sciences in Antiquity, 2nd. edition, Brown University Press, Providence, R. I., (1957).
[7] O. Neugebauer, Mathematische Keilschrift-Texte/Mathematical Cuneiform Texts, Springer-Verlag Berlin Heidel-berg, (1935).
[8] V. C. Harris, Terminal digit proof that √ 2 is irrational, The Mathematical Gazette, 53 (1969) 65.
[9] V. C. Harris, On proofs of the irrationality of √ 2 , The Mathematics Teacher, 64 (1971) 19–21.
[10] H. Eves, The irrationality of √ 2 , The Mathematics Teacher, 38 (1945) 317–318.
[11] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4nd edition, Cambridge University Press, (1927).
[12] M. V. Subbarao, A simple irrationality proof for quadratic surds, Amer. Math. Monthly, 75 (1968) 772–773.
[13] E. Halfar, The irrationality of √ 2 , The American Mathematical Monthly, 62 (1955) 437.
[14] R. Dedekind (Translator: W. W. Beman), Essays on the Theory of Numbers, Dover Publications, (1963).
[15] J. Conway and V. Neumann, The power of mathematics, in Power (Darwin College Lectures), editors: A. Black-well, D. MacKay, Cambridge University Press, (2005).
[16] S. J. Miller and D. Montague, Picturing Irrationality, Math. Mag., 85 (2012) 110–114.
[17] G. Cairns, Proof without words: √ 2 is irrational, Math. Mag., 85 (2012) 123.
[18] J. Stillwell, Mathematics and Its History, 3nd edition, Springer-Verlag New York, (2010).
[19] D. Kalman, R. Mena, S. Shahriari, S. J. Miller and D. Montague, Variations on an irrational theme-geometry,
dynamics, algebra, Math. Mag., 70 (1997) 93–104.
[20] M. Laczkovich, Conjecture and Proof, Mathematical Association of America, (2001).
[21] V. H. Moll, Numbers and Functions: From a classical-experimental mathematician’s point of view, Mathematica
Association of America, (2012).
[22] F. V. Waugh and M. W. Maxfield, Side and diagonal numbers, Math. Mag., 40 (1967) 74–83.
[23] T. M. Liggett and P. Petersen, The law of large numbers and √ 2 , Amer. Math. Monthly, 102 (1995) 31–35.
[24] J. Conway and R. Guy, The Book of Numbers, Springer-Verlag New York, (1996).
[25] G. C. Berresford, A simpler proof of a well-known fact, Amer. Math. Monthly, 115 (2008) 524.
[26] N. C. Ferreno, Yet another proof of the irrationality of √ 2 , Amer. Math. Monthly, 116 (2009) 68–69.
[27] R. W. Floyd, What else Pythagoras could have done, Amer. Math. Monthly, 96 (1989) 67.
[28] D. Hensley, Continued Fractions, World Scientific Publishing, (2006).
[29] J. A. C. Araujo, A difference equation leading to the irrationality of √ 2 , Amer. Math. Monthly, 121 (2014) 443.
[30] K. K. Usadi and K. Mikhail, Meaning in classical mathematics: is it at odds with intuitionism?, Intellectica, 56
(2011) 223–302.
[31] S. M. A. Khatami, A model theoretic proof of the irrationality of √ 2 , Amer. Math. Monthly, (submitted).
[32] A. Bogomolny, Square root of 2 is irrational, Cut the Knot, (1996–2018).