تعداد نشریات | 43 |
تعداد شمارهها | 1,637 |
تعداد مقالات | 13,315 |
تعداد مشاهده مقاله | 29,870,896 |
تعداد دریافت فایل اصل مقاله | 11,944,950 |
Characterization of finite groups with a unique non-nilpotent proper subgroup | ||
International Journal of Group Theory | ||
مقاله 23، دوره 10، شماره 1، خرداد 2021، صفحه 47-53 اصل مقاله (189.43 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2019.116209.1543 | ||
نویسندگان | ||
Bijan Taeri* ؛ Fatemeh Tayanloo-Beyg | ||
Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box 84156-83111, Isfahan, Iran | ||
چکیده | ||
We characterize finite non-nilpotent groups $G$ with a unique non-nilpotent proper subgroup. We show that $|G|$ has at most three prime divisors. When $G$ is supersolvable we find the presentation of $G$ and when $G$ is non-supersolvable we show that either $G$ is a direct product of an Schmidt group and a cyclic group or a semi direct product of a $p$-group by a cyclic group of prime power order. | ||
کلیدواژهها | ||
Finite groups؛ minimal non-abelian groups؛ minimal non-nilpotent groups؛ critical groups | ||
مراجع | ||
[1] A. Ballester-Bolinches, R. Esteban-Romero, On minimal non-supersoluble group, Rev. Mat. Iberoamericana., 23 no. 1 (2007) 127–142. [2] N. Itˆo, Note on (LM)-groups of finite order, Kdai Math. Sem. Rep., 3 (1951) 1–6.
[3] H. Kurzweil and B. Stellmacher, The theory of finite groups, An introduction, Translated from the 1998 German original, Universitext, Springer-Verlag, New York, 2004. [4] G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Am. Math. Soc., 4 (1903) 398–404. [5] L. R´edei, Das Schiefe Produkt in der Gruppentheorie, Comment. Math. Helv., 20 (1947) 225–264.
[6] L. R´edei, Die endlichen einstufig nichtnilpotenten Gruppen, Publ. Math. Debrecen., 4 (1956) 303–324.
[7] J. S Rose, The influence on a finite group of its proper abnormal structure, J. London Math. Soc., 40 (1965) 348–361.
[8] D. J. S. Robinson, A course in the theory of groups, 2nd ed., Springer-Verlag, New York, 1996.
[9] F. G. Russo, Minimal non-nilpotent groups which are supersolvable, JP. J. Algebra Number Theory Appl., 18 (2010) 79–88. [10] O. Yu. Schmidt, Groups whose all subgroups are special, Math. Sb., 31 (1924) 366–372.
[11] B. Taeri and F. Tayanloo-Beyg, Finite groups with a unique non-abelian proper subgroup, J. Algebra Appl., (2019) pp. 13. [12] M. Zarrin, A generalization of Schmidt’s Theorem on groups with all subgroups nilpotent, Arch. Math., 99 (2012) 201–206. | ||
آمار تعداد مشاهده مقاله: 368 تعداد دریافت فایل اصل مقاله: 434 |